Abstract

Cities account for over 66% of global energy use and with over 68% of the population expected to live in urbanized areas by 2050, anthropogenic urban heat release is likely to become one of the most significant contributors to the creation of urban microclimates. In the present work, an open-source framework for one-way upstream coupled multiscale urban thermal environment simulations is examined and validated and can provide valuable insights about the flow behavior and energy transport between spatial scales. In this study, a city-wide multiscale model with over 500,000 building, road, and tree canopy data points parameterizing Atlanta, GA as a digital twin is developed and validated with a spatial scale of 5 m. The validated model is used to perform a parametric study on the implications bulk surface albedo (SA) has on the city's anthropogenic heat (AH) release in terms of heat flux. The study demonstrates that anthropogenic heat flux for building waste energy accounts for a small part of the total surface heat flux, and a detailed understanding of the components of urban heat (particularly with respect to total surface heat flux) is required to predict and simulate an urban thermal environment.

References

1.
US Department of Energy
,
2015
, “
Chapter 5: Increasing Efficiency of Building Systems and Technologies
,”
Quadrennial Technology Review
,
US DOE
,
Washington, DC
, accessed Mar. 26, 2024, https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015-chapter5.pdf
2.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
, and
Wang
,
M.
,
2014
, “
Anthropogenic Heating of the Urban Environment Due to Air Conditioning
,”
J. Geophys. Res.: Atmos.
,
119
(
10
), pp.
5949
5965
.10.1002/2013JD021225
3.
Zhong
,
R.
,
2023
, “
Getting Inside California's Wild Weather, 8 Miles Over the Pacific
,” accessed Oct. 10, 2023, https://www.nytimes.com/2023/01/14/climate/california-atmospheric-river-noaa.html
4.
Swain
,
D. L.
,
Langenbrunner
,
B.
,
Neelin
,
J. D.
, and
Hall
,
A.
,
2018
, “
Increasing Precipitation Volatility in Twenty-First-Century California
,”
Nat. Clim. Change
,
8
(
5
), pp.
427
433
.10.1038/s41558-018-0140-y
5.
Anderson
,
G. B.
, and
Bell
,
M. L.
,
2011
, “
Heat Waves in the United States: Mortality Risk During Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities
,”
Environ. Health Perspect.
,
119
(
2
), pp.
210
218
.10.1289/ehp.1002313
6.
Luber
,
G.
,
Knowlton
,
K.
,
Balbus
,
J.
,
Hayden
,
M.
,
Hess
,
J.
,
McGeehin
,
M.
,
Sheats
,
N.
, et al.,
2014
, “
Ch.9: Human Health
,”
Climate Change Impacts in the United States: The Third National Climate Assessment
,
U.S. Global Change Research Program
,
Washington, DC
, pp.
220
256
.
7.
Petitti
,
D. B.
,
Hondula
,
D. M.
,
Yang
,
S.
,
Harlan
,
S. L.
, and
Chowell
,
G.
,
2016
, “
Multiple Trigger Points for Quantifying Heat-Health Impacts: New Evidence From a Hot Climate
,”
Environ. Health Perspect.
,
124
(
2
), pp.
176
183
.10.1289/ehp.1409119
8.
Battisti
,
D. S.
, and
Naylor
,
R. L.
,
2009
, “
Historical Warnings of Future Food Insecurity With Unprecedented Seasonal Heat
,”
Science
,
323
(
5911
), pp.
240
244
.10.1126/science.1164363
9.
Anderson
,
M.
,
McMinn
,
S.
,
Eckert
,
N.
,
Underwood
,
N.
,
Mussenden
,
S.
,
Ready
,
R.
, and
Diffendal
,
T.
,
2019
, “
As Rising Heat Bakes U.S. Cities, the Poor Often Feel It Most
,” accessed Oct. 10, 2023, https://www.npr.org/2019/09/03/754044732/as-rising-heat-bakes-u-s-cities-the-poor-often-feel-it-most
10.
Levine
,
J. A.
,
2011
, “
Poverty and Obesity in the U.S
,”
Diabetes
,
60
(
11
), pp.
2667
2668
.10.2337/db11-1118
11.
Diffenbaugh
,
N. S.
, and
Scherer
,
M.
,
2011
, “
Observational and Model Evidence of Global Emergence of Permanent, Unprecedented Heat in the 20th and 21st Centuries
,”
Clim. Change
,
107
(
3–4
), pp.
615
624
.10.1007/s10584-011-0112-y
12.
Dey
,
S.
, and
Joshi
,
Y.
,
2022
, “
Recent Progress and Challenges in Microscale Urban Heat Modeling and Measurement for Urban Engineering Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
1
), p.
010801
.10.1115/1.4056054
13.
Orlanski
,
I.
,
1975
, “
A Rational Subdivision of Scales for Atmospheric Processes
,”
Bull. Am. Meteorol. Soc.
,
56
(
5
), pp.
527
530
.https://www.jstor.org/stable/26216020
14.
Kimura
,
F.
, and
Takahashi
,
S.
,
1991
, “
The Effects of Land-Use and Anthropogenic Heating on the Surface Temperature in the Tokyo Metropolitan Area: A Numerical Experiment
,”
Atmos. Environ., Part B
,
25
(
2
), pp.
155
164
.10.1016/0957-1272(91)90050-O
15.
Stanhill
,
G.
, and
Kalma
,
J. D.
,
1995
, “
Solar Dimming and Urban Heating at Hong Kong
,”
Int. J. Climatol.
,
15
(
8
), pp.
933
941
.10.1002/joc.3370150807
16.
Narita
,
K.
, and
Maekawa
,
T.
,
1991
, “
Energy Recycling System for Urban Waste Heat
,”
Energy Build.
,
16
(
1–2
), pp.
553
560
.10.1016/0378-7788(91)90023-V
17.
Saitoh
,
T.
,
Shimada
,
T.
, and
Hisada
,
T.
,
1992
, “
Urban Warming and Energy Consumption in Tokyo Metro Area
,”
SAE
Paper No. 929190. 10.4271/929190
18.
Henderson-Sellers
,
A.
, and
Wilson
,
M. F.
,
1983
, “
Albedo Observations of the Earth's Surface for Climate Research
,”
Philos. Trans. R. Soc. London. Ser. A
,
309
(
1508
), pp.
285
294
.https://www.jstor.org/stable/37357
19.
Coakley
,
J. A.
,
2003
, “
Reflectance and Albedo, Surface
,”
Encyclopedia of the Atmosphere
,
J. R.
Holton
, and
J. A.
Curry
, eds.,
Academic Press
,
Cambridge, MA
, pp.
1914
1923
.
20.
Barzyk
,
T. M.
, and
Frederick
,
J.
,
2006
,
Final Report: The Energy Balance of Urban Microclimates
,
University of Chicago
,
Chicago, IL
.
21.
PALM
,
2021
, “
PALM Official Technical Documentation
,”
Palm Group
,
Hannover, Germany
, accessed Oct. 10, 2023, http://palm.muk.uni-hannover.de/trac/wiki
22.
Raasch
,
S.
, and
Schröter
,
M.
,
2001
, “
PALM - A Large-Eddy Simulation Model Performing on Massively Parallel Computers
,”
Meteorol. Z.
,
10
(
5
), pp.
363
372
.10.1127/0941-2948/2001/0010-0363
23.
Maronga
,
B.
,
Gryschka
,
M.
,
Heinze
,
R.
,
Hoffmann
,
F.
,
Kanani-Sühring
,
F.
,
Keck
,
M.
,
Ketelsen
,
K.
,
Letzel
,
M. O.
,
Sühring
,
M.
, and
Raasch
,
S.
,
2015
, “
The Parallelized Large-Eddy Simulation Model (PALM) Version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives
,”
Geosci. Model Dev.
,
8
(
8
), pp.
2515
2551
.10.5194/gmd-8-2515-2015
24.
Maronga
,
B.
,
Banzhaf
,
S.
,
Burmeister
,
C.
,
Esch
,
T.
,
Forkel
,
R.
,
Fröhlich
,
D.
,
Fuka
,
V.
, et al.,
2020
, “
Overview of the PALM Model System 6.0
,”
Geosci. Model Dev.
,
13
(
3
), pp.
1335
1372
.10.5194/gmd-13-1335-2020
25.
Deardorff
,
J. W.
,
1980
, “
Stratocumulus-Capped Mixed Layers Derived From a Three-Dimensional Model
,”
Boundary-Layer Meteorol.
,
18
(
4
), pp.
495
527
.10.1007/BF00119502
26.
Moeng
,
C.-H.
, and
Wyngaard
,
J. C.
,
1988
, “
Spectral Analysis of Large-Eddy Simulations of the Convective Boundary Layer
,”
J. Atmos. Sci.
,
45
(
23
), pp.
3573
3587
.10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2
27.
Saiki
,
E. M.
,
Moeng
,
C.-H.
, and
Sullivan
,
P. P.
,
2000
, “
Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer
,”
Boundary-Layer Meteorol.
,
95
(
1
), pp.
1
30
.10.1023/A:1002428223156
28.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.10.1063/1.1761178
29.
Arakawa
,
A.
, and
Lamb
,
V. R.
,
1977
, “
Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model
,”
Methods in Computational Physics: Advances in Research and Applications
, Vol.
17
,
J.
Chang
, ed.,
Elsevier
, Amsterdam, The Netherlands, pp.
173
265
.
30.
Williamson
,
J. H.
,
1980
, “
Low-Storage Runge-Kutta Schemes
,”
J. Comput. Phys.
,
35
(
1
), pp.
48
56
.10.1016/0021-9991(80)90033-9
31.
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Liu
,
Z.
,
Berner
,
J.
,
Wang
,
W.
, et al.,
2021
,
A Description of the Advanced Research WRF Model Version 4.3
,
National Center for Atmospheric Research
,
Boulder, CO
.
32.
Li
,
L.
,
Li
,
W.
, and
Jin
,
J.
,
2014
, “
Improvements in WRF Simulation Skills of Southeastern United States Summer Rainfall: Physical Parameterization and Horizontal Resolution
,”
Clim. Dyn.
,
43
(
7–8
), pp.
2077
2091
.10.1007/s00382-013-2031-2
33.
Ooyama
,
K. V.
,
1990
, “
A Thermodynamic Foundation for Modeling the Moist Atmosphere
,”
J. Atmos. Sci.
,
47
(
21
), pp.
2580
2593
.10.1175/1520-0469(1990)047<2580:ATFFMT>2.0.CO;2
34.
Laprise
,
R.
,
1992
, “
The Euler Equations of Motion With Hydrostatic Pressure as an Independent Variable
,”
Mon. Weather Rev.
,
120
(
1
), pp.
197
207
.10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
35.
Park
,
S.-H.
,
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Fowler
,
L. D.
, and
Duda
,
M. G.
,
2013
, “
Evaluation of Global Atmospheric Solvers Using Extensions of the Jablonowski and Williamson Baroclinic Wave Test Case
,”
Mon. Weather Rev.
,
141
(
9
), pp.
3116
3129
.10.1175/MWR-D-12-00096.1
36.
Wicker
,
L. J.
, and
Skamarock
,
W. C.
,
2002
, “
Time-Splitting Methods for Elastic Models Using Forward Time Schemes
,”
Mon. Weather Rev.
,
130
(
8
), pp.
2088
2097
.10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
37.
Kadasch
,
E.
,
Sühring
,
M.
,
Gronemeier
,
T.
, and
Raasch
,
S.
,
2020
, “
Mesoscale Nesting Interface of the PALM Model System 6.0
,”
Geosci. Model Dev.
,
14
(
9
), pp.
5435
5465
.10.5194/gmd-14-5435-2021
38.
Rew
,
R.
,
Davis
,
G.
,
Emmerson
,
S.
,
Cormack
,
C.
,
Caron
,
J.
,
Pincus
,
R.
,
Hartnett
,
E.
,
Heimbigner
,
D.
,
Appel
,
L.
, and
Fisher
,
W.
,
1989
, “
Unidata NetCDF
,” accessed Oct. 10, 2023, http://www.unidata.ucar.edu/software/netcdf/
39.
Clough
,
S. A.
,
Shephard
,
M. W.
,
Mlawer
,
E. J.
,
Delamere
,
J. S.
,
Iacono
,
M. J.
,
Cady-Pereira
,
K.
,
Boukabara
,
S.
, and
Brown
,
P. D.
,
2005
, “
Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes
,”
J. Quant. Spectrosc. Radiat. Transfer
,
91
(
2
), pp.
233
244
.10.1016/j.jqsrt.2004.05.058
40.
Bing
,
2020
, “
Building Footprints
,” Microsoft, Redmond, WA, accessed Oct. 10, 2023, https://www.microsoft.com/en-us/maps/building-footprints
41.
Microsoft
,
2018
, “
Computer Generated Building Footprints for the United States
,” Microsoft, Redmond, WA, accessed Oct. 10, 2023, https://github.com/Microsoft/USBuildingFootprints
42.
Fulton County
, “
Street Centerlines
,” Fulton County, Atlanta, GA, accessed Oct. 10, 2023, https://gisdata.fultoncountyga.gov/datasets/street-centerlines/explore
43.
Giarrusso
,
T.
,
2022
, “
2018 City of Atlanta Urban Tree Canopy Assessment and Change Analysis (2008-2018)
,”
Center for Spatial Planning Analytics and Visualization, Georgia Institute of Technology and Department of Planning and Community Development, City of Atlanta, City of Atlanta Department of Planning and Community Development
,
Report
.https://geospatial.gatech.edu/AtlantaUTC/2018FinalReport.pdf
44.
Dey
,
S.
,
Mallen
,
E.
,
Stone
,
B.
, and
Joshi
,
Y.
,
2023
, “
Evaluation and Validation of Microscale Atmospheric Modeling With Offline Weather Research and Forecasting Model to Parallelized Large-Eddy Simulation Model Forcing Conditions
,”
J. Eng. Sustainable Build. Cities
,
4
(
1
), p.
28
.10.1115/1.4062112
45.
Mallen
,
E.
,
Bakin
,
J.
,
Stone
,
B.
,
Sivakumar
,
R.
, and
Lanza
,
K.
,
2020
, “
Thermal Impacts of Built and Vegetated Environments on Local Microclimates in an Urban University Campus
,”
Urban Clim.
,
32
, p.
100640
.10.1016/j.uclim.2020.100640
46.
Robinson
,
P. J.
,
2001
, “
On the Definition of a Heat Wave
,”
J. Appl. Meteorol.
,
40
(
4
), pp.
762
775
.10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2
47.
US Environmental Protection Agency
,
2022
, “
Air Quality System Data Mart
,” US Environmental Protection Agency, Washington, DC, accessed Oct. 10, 2023, https://www.epa.gov/outdoor-air-quality-data
48.
NCEP
,
2015
, “
NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids
,” National Centers For Environmental Prediction, National Weather Service, NOAA, and U.S. Department Of Commerce, accessed Oct. 10, 2023, http://rda.ucar.edu/datasets/ds083.3/
49.
Gusson
,
C. S.
, and
Duarte
,
D. H. S.
,
2016
, “
Effects of Built Density and Urban Morphology on Urban Microclimate - Calibration of the Model ENVI-Met V4 for the Subtropical Sao Paulo, Brazil
,”
Proc. Eng.
,
169
, pp.
2
10
.10.1016/j.proeng.2016.10.001
50.
Liu
,
Z.
,
Zheng
,
S.
, and
Zhao
,
L.
,
2018
, “
Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area
,”
Atmosphere
,
9
(
5
), p.
198
.10.3390/atmos9050198
51.
Feng
,
W.
,
Ding
,
W.
,
Zhen
,
M.
,
Zou
,
W.
, and
Wang
,
H.
,
2021
, “
Cooling Effect of Urban Small Green Spaces in Qujiang Campus, Xi'an Jiaotong University, China
,”
Environ., Dev. Sustainability
,
24
(
3
), pp.
4278
4298
.10.1007/s10668-021-01615-6
52.
Hadavi
,
M.
, and
Pasdarshahri
,
H.
,
2021
, “
Impacts of Urban Buildings on Microclimate and Cooling Systems Efficiency: Coupled CFD and BES Simulations
,”
Sustainable Cities Soc.
,
67
, p.
102740
.10.1016/j.scs.2021.102740
53.
Luo
,
X.
,
Vahmani
,
P.
,
Hong
,
T.
, and
Jones
,
A.
,
2020
, “
City-Scale Building Anthropogenic Heating During Heat Waves
,”
Atmosphere
,
11
(
11
), p.
1206
.10.3390/atmos11111206
54.
Vahmani
,
P.
,
Luo
,
X.
,
Jones
,
A.
, and
Hong
,
T.
,
2022
, “
Anthropogenic Heating of the Urban Environment: An Investigation of Feedback Dynamics Between Urban Micro-Climate and Decomposed Anthropogenic Heating From Buildings
,”
Build. Environ.
,
213
, p.
108841
.10.1016/j.buildenv.2022.108841
55.
Ichinose
,
T.
,
Shimodozono
,
K.
, and
Hanaki
,
K.
,
1999
, “
Impact of Anthropogenic Heat on Urban Climate in Tokyo
,”
Atmos. Environ.
,
33
(
24–25
), pp.
3897
3909
.10.1016/S1352-2310(99)00132-6
You do not currently have access to this content.