Abstract

Cooling of the endwall of a nozzle guide vane should receive special attention due to its uniqueness of near-wall complex secondary flows and concomitant challenge of offering film-coverage for cooling the endwall pressure-side corner regions. The use of internal enhanced cooling at the endwall backside could be an option, but it increases manufacturing cost, adds weight to the component, causing excessive pressure losses in the secondary air system. Novel film cooling concepts are, therefore, required to provide effective cooling for these difficult-to-cool regions. This study proposes an active cooling concept effected by placing a row of film cooling holes on the vane pressure surface near the endwall with the intention of utilizing second-order cooling (or phantom cooling) from pressure-surface film-coolant injection to provide increased cooling effectiveness and enlarge the area of coverage on the endwall. The effects of hole diameter, injection angle, and compound angle, as well as coolant injection rate are investigated. Detailed phantom cooling effectiveness over the endwall is documented using pressure-sensitive paint (PSP). To provide a description of the flow physics driving the cooling process, computational modeling is carried out to qualitatively document mixing of coolant with the freestream flows and further to qualitatively evaluate heat transfer changes caused by the pressure-surface film injection. Experiments show that significant cooling occurs in the endwall pressure-side corner and extends beyond the passage throat. Higher coolant injection rates and an optimized pressure-surface injection geometry maximize endwall phantom cooling. An effectiveness correlation for the active cooling is developed to provide a straightforward tool for designers to apply in turbine design.

References

1.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
2.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Rouina
,
S.
, and
Franchina
,
N.
,
2022
, “
The Aero-Thermal Performance of Purge Flow and Discrete Holes Film Cooling of Rotor Blade Platform in Modern High Pressure Gas Turbines: A Review
,”
Int. J. Turbomach. Propul. Power
,
7
(
3
), p.
22
.10.3390/ijtpp7030022
3.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
, and
Morris
,
M. C.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,” ASME Paper No. GT2014-26373. 10.1115/GT2014-26373
4.
Yang
,
X.
,
Zhao
,
Q.
, and
Feng
,
Z. P.
,
2022
, “
Experimental Evaluation of Cooling Effectiveness From Novel Film Holes Over Turbine Endwalls With Inlet Swirl
,”
Int. J. Therm. Sci.
,
174
, p.
107434
.10.1016/j.ijthermalsci.2021.107434
5.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.10.1115/1.2720493
6.
Yang
,
X.
,
Liu
,
Z.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z.
, and
Simon
,
T. W.
,
2020
, “
Comparisons of Endwall Overall Effectiveness From Two Film Hole Distribution Patterns at Low and High Exit Mach Numbers
,”
ASME J. Turbomach.
,
142
(
10
), p.
101007
.10.1115/1.4047809
7.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angle
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.10.1115/1.4042057
8.
Yang
,
X.
,
Zhao
,
Q.
, and
Feng
,
Z.
,
2021
, “
Investigation and Application of Bio-Inspired Microscale Structures to Turbine Endwall for Enhancing Film Cooling Performance
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061001
.10.1115/1.4050413
9.
Miao
,
X.
,
Zhang
,
Q.
,
Atkin
,
C.
,
Sun
,
Z. Z.
, and
Li
,
Y. S.
,
2018
, “
Improving Purge Air Cooling Effectiveness by Engineered End-Wall Surface Structures—Part II: Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
9
), p.
091002
.10.1115/1.4040854
10.
Rezasoltani
,
M.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2014
, “
Experimental Investigation of the Effect of Purge Flow on Film Cooling Effectiveness on a Rotating Turbine With Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
136
(
9
), p.
091009
.10.1115/1.4027196
11.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.10.1115/1.4002951
12.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
,
2009
, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage
,” ASME Paper No. GT2009-60236. 10.1115/GT2009-60236
13.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streak and Phantom Cooling in a Turbine Rotor Passage: Part 1—Separate Effects
,”
ASME J. Turbomach.
,
115
(
4
), pp.
657
666
.10.1115/1.2929300
14.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streak and Phantom Cooling in a Turbine Rotor Passage: Part 2—Combined Effects and Analytical Modeling
,”
ASME J. Turbomach.
,
115
(
4
), pp.
667
674
.10.1115/1.2929301
15.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,” ASME Paper No. 2000-GT-0200. 10.1115/2000-GT-0200
16.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2012
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041014
.10.1115/1.4003725
17.
Popović
,
I.
, and
Hodson
,
H. P.
,
2013
, “
Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
135
(
6
), p.
061014
.10.1115/1.4023621
18.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2011
, “
Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine—Part II: Independent Influences of Vane Trailing Edge and Purge Cooling
,”
ASME J. Turbomach.
,
134
(
3
), p.
031015
.10.1115/1.4003174
19.
Zhang
,
L.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2014
, “
The Effects of Vane Showerhead Injection Angle and Film Compound Angle on Nozzle Endwall Cooling (Phantom Cooling)
,”
ASME J. Turbomach.
,
137
(
2
), p.
021003
.10.1115/1.4028291
20.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Phantom Cooling of Nozzle Trailing Edge Discharge on Blade Surface and Platform
,” ASME Paper No. GT2014-25417. 10.1115/GT2014-25417
21.
Li
,
S. J.
,
Yang
,
S. F.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2016
, “
Turbine Blade Surface Phantom Cooling From Upstream Nozzle Trailing Edge Ejection
,”
AIAA J. Thermophys. Heat Transfer
,
30
(
4
), pp.
770
781
.10.2514/1.T4796
22.
Anthony
,
R. J.
,
Finnegan
,
J.
, and
Clark
,
J.
,
2021
, “
Phantom Cooling Effects on Rotor Blade Surface Heat Flux in a Transonic Full Scale 1 + 1/2 Stage Rotating Turbine
,”
ASME J. Turbomach.
(accepted).10.1115/1.4051245
23.
Zhang
,
Y.
, and
Yuan
,
X.
,
2012
, “
Experimental Investigation of Turbine Phantom Cooling on Suction Side With Combustor Turbine Leakage Gap Flow and Endwall Film Cooling
,” ASME Paper No. GT2012-69295. 10.1115/GT2012-69295
24.
Li
,
S. J.
,
Lee
,
J.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2016
, “
Turbine Platform Cooling and Blade Suction Surface Phantom Cooling From Simulated Swirl Purge Flow
,”
ASME J. Turbomach.
,
138
(
8
), p.
081004
.10.1115/1.4032676
25.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
Z. S.
, and
Feng
,
Z. P.
,
2015
, “
Computational Study on Effects of Purge Flow on Endwall Film Cooling and Blade Suction Side Phantom Cooling
,”
Proceedings of the 3rd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control
, Taipei, Taiwan, Oct. 16–19, Paper No. IWHT
2015
1165
.
26.
Bai
,
B.
,
Li
,
Z.
,
Zhang
,
K.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2023
, “
Effects of Hole Blockage on Endwall Film Cooling and Vane Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041001
.10.1115/1.4056094
27.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
Z. S.
,
Feng
,
Z. P.
, and
Simon
,
T. W.
,
2019
, “
Turbine Platform Phantom Cooling From Airfoil Film Coolant, With Purge Flow
,”
Int. J. Heat Mass Transfer
,
140
, pp.
25
40
.10.1016/j.ijheatmasstransfer.2019.05.109
28.
Zhang
,
Y.
, and
Yuan
,
X.
,
2014
, “
Experimental Investigation of Turbine Phantom Cooling on Endwall With Trailing Edge Discharge Flow
,” ASME Paper No. GT2014-26781.
29.
Liu
,
K.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2018
, “
Turbine Nozzle Endwall Phantom Cooling With Compound Angled Pressure Side Injection
,” ASME Paper No. GT2018-75881. 10.1115/GT2018-75881
30.
Li
,
F.
,
Jia
,
Z.
,
Wang
,
H.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2022
, “
Experimental and Numerical Investigations Into the Blade Tip Phantom Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071013
.10.1115/1.4054525
31.
Yang
,
X.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z.
, and
Simon
,
T. W.
,
2019
, “
Controlling Leakage Flows Over a Rotor Blade Tip Using Air-Curtain Injection: Part I—Aero-Thermal Performance of Rotor Tips
,” ASME Paper No. GT2019-90232.
32.
Kanjirakkad
,
V.
,
Thomas
,
R.
,
Hodson
,
H.
,
Janke
,
E.
,
Haselbach
,
F.
, and
Whitney
,
C.
,
2008
, “
Passive Shroud Cooling Concepts for HP Turbines: Experimental Investigations
,”
ASME J. Turbomach.
,
130
(
1
), p.
011017
.10.1115/1.2749300
33.
Yang
,
X.
,
Zhao
,
Q.
, and
Feng
,
Z. P.
,
2021
, “
Turbine Vane Endwall Film Cooling Considering Flow Nonuniformities and Coolant Injection From Upstream Combustors
,”
Heat Transfer Res.
,
52
(
13
), pp.
11
31
.10.1615/HeatTransRes.2021037778
34.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
Z.
,
Simon
,
T.
, and
Feng
,
Z.
,
2019
, “
Endwall Film Cooling Performance for a First-Stage Guide Vane With Upstream Combustor Walls and Inlet Injection
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011008
.10.1115/1.4041342
35.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
, and
Feng
,
Z.
,
2022
, “
Investigations on Cooling Hole Patterns Over a Turbine Endwall for Improving Cooling Effectiveness
,” ASME Paper No. GT2022-82799. 10.1115/GT2022-82799
36.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
, and
Feng
,
Z.
,
2023
, “
Film Cooling on Turbine Vane Endwalls With Different Inlet Cooling Configurations: Experimental and Computational Results
,”
ASME J. Turbomach.
,
145
(
10
), p.
101010
.10.1115/1.4063050
37.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.10.1016/S0142-727X(99)00017-X
38.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.10.1115/1.4032674
39.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
33
38
.http://54.243.252.9/engr-1330-webroot/6-Projects/P-InstrumentCalibration/Kline_McClintock1953.pdf
40.
ANSYS
, 2022, “
CFX-Solver Modeling Guide, Release 2022R2
,”
ANSYS
,
Canonsburg, PA
.
41.
Yang
,
X.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2021
, “
Film Cooling Patterns Over an Aircraft Engine Turbine Endwall With Slot Leakage and Discrete Hole Injection
,”
Int. J. Heat Mass Transfer
,
165
, p.
120565
.10.1016/j.ijheatmasstransfer.2020.120565
42.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Blade Film-Cooling With Axial and Compound Shaped Holes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
4
), p.
044501
.10.1115/1.4025901
You do not currently have access to this content.