Graphical Abstract Figure

Numerical investigation of forced convective heat transfer of alumina-water nanofluids in helical tubes. The study highlights the effects of nanoparticle diameter, volume fraction, Reynolds number, pitch, and curvature ratio on velocity, temperature, and thermal performance, demonstrating enhanced heat transfer efficiency with increased nanoparticle concentration and optimized geometric parameters.

Graphical Abstract Figure

Numerical investigation of forced convective heat transfer of alumina-water nanofluids in helical tubes. The study highlights the effects of nanoparticle diameter, volume fraction, Reynolds number, pitch, and curvature ratio on velocity, temperature, and thermal performance, demonstrating enhanced heat transfer efficiency with increased nanoparticle concentration and optimized geometric parameters.

Close modal

Abstract

This paper investigates the forced convection of alumina-water nanofluids within helical tubes, maintaining a constant wall temperature and assuming thermal equilibrium between the nanoparticles and the base fluid. The nanofluid model incorporates the effects of alumina (Al2O3) nanoparticle volume fraction, diameter, and temperature on thermophysical properties. The governing equations are solved using the Forward-Time Central-Space Finite Volume method in conjunction with the simple algorithm. Numerical results are validated against experimental data, demonstrating high accuracy. The study explores the effects of pitch size, curvature ratio, nanoparticle volume fraction, nanoparticle diameter, and Reynolds number on velocity contours, temperature profiles, secondary flow, thermophysical properties, friction coefficient, and heat transfer rate. Additionally, the figure of merit evaluates the impact of these parameters on the thermal performance of the system. The results indicate that an increase in Reynolds number and nanoparticle diameter negatively affects thermal performance, while higher nanoparticle volume fraction, curvature ratio, and pitch size enhance it. Furthermore, incorporating nanoparticles in straight tubes proves to be more advantageous compared to helical tubes. This study tested volumetric ratios of 1%, 2%, and 4%, which resulted in increases in heat transfer coefficients of 21%, 32%, and 43%, respectively, compared to pure water under similar conditions, such as Reynolds number and coil pitch.

References

1.
Dean
,
W. R.
,
1928
, “
The Stream-Line Motion of Fluid in a Curved Pipe
,”
Phil. Mag. Ser.
,
7
(
30
), pp.
673
695
.10.1080/14786440408564513
2.
Hajmohammadi
,
M.
, and
Rezaei
,
E.
,
2019
, “
Proposing a New Algorithm for the Optimization of Conduction Pathways Based on a Recursive Localization
,”
Appl. Therm. Eng.
,
151
, pp.
146
153
.10.1016/j.applthermaleng.2019.01.109
3.
Kalb
,
C.
, and
Seader
,
J.
,
1972
, “
Heat and Mass Transfer Phenomena for Viscous Flow in Curved Circular Tubes
,”
Int. J. Heat Mass Transf.
,
15
(
4
), pp.
801
817
.10.1016/0017-9310(72)90122-6
4.
Patankar
,
S. V.
,
Pratap
,
V.
, and
Spalding
,
D.
,
1974
, “
Prediction of Laminar Flow and Heat Transfer in Helically Coiled Pipes
,”
J. Fluid Mech.
,
62
(
3
), pp.
539
551
.10.1017/S0022112074000796
5.
Prandtl
,
L.
,
1949
, “
Erzeugung Von Zirkulationen Beim Schütteln Von Gefäßen
,”
J. App. Math. Mech.
,
29
(
1–2
), pp.
8
9
.10.1002/zamm.19490290106
6.
Seban
,
R.
, and
McLaughlin
,
E.
,
1963
, “
Heat Transfer in Tube Coils With Laminar and Turbulent Flow
,”
Int. J. Heat Mass Transf.
,
6
(
5
), pp.
387
395
.10.1016/0017-9310(63)90100-5
7.
Schmidt
,
E. F.
,
1967
, “
Wärmeübergang Und Druckverlust in Rohrschlangen
,”
Chem. Ing. Tech.
,
39
(
13
), pp.
781
789
.10.1002/cite.330391302
8.
Janssen
,
L.
, and
Hoogendoorn
,
C.
,
1978
, “
Laminar Convective Heat Transfer in Helical Coiled Tubes
,”
Int. J. Heat Mass Transf.
,
21
(
9
), pp.
1197
1206
.10.1016/0017-9310(78)90138-2
9.
Jeschke
,
D.
,
1925
, “
Heat Transfer and Pressure Loss in Coiled Pipes
,”
Ergaenzungsheft Z. Ver. Disch. Ing.
,
68
, pp.
24
28
.
10.
Hawe
,
W.
,
1932
, “
Some Sidelights on the Heat Transfer Problems
,”
Trans. Inst. Chem. Eng.
,
10
, pp.
161
167
.
11.
Dravid
,
A. N.
,
Smith
,
K.
,
Merrill
,
E.
, and
Brian
,
P.
,
1971
, “
Effect of Secondary Fluid Motion on Laminar Flow Heat Transfer in Helically Coiled Tubes
,”
AIChE J.
,
17
(
5
), pp.
1114
1122
.10.1002/aic.690170517
12.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
1980
, “
Fully Developed Laminar Flow in a Helically Coiled Tube of Finite Pitch
,”
Chem. Eng. Commun.
,
7
(
1–3
), pp.
57
78
.10.1080/00986448008912549
13.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
1981
, “
Fully Developed Laminar Convection From a Helical Coil
,”
Chem. Eng. Commun.
,
9
(
1–6
), pp.
185
200
.10.1080/00986448108911023
14.
Liu
,
S.
, and
Masliyah
,
J. H.
,
1993
, “
A Decoupling Numerical Method for Fluid Flow
,”
Int. J. Numer. Methods Fluids
,
16
(
8
), pp.
659
682
.10.1002/fld.1650160802
15.
Naphon
,
P.
, and
Wongwises
,
S.
,
2006
, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renew. Sustain. Energy Rev.
,
10
(
5
), pp.
463
490
.10.1016/j.rser.2004.09.014
16.
Vashisth
,
S.
,
Kumar
,
V.
, and
Nigam
,
K. D.
,
2008
, “
A Review on the Potential Applications of Curved Geometries in Process Industry
,”
Ind. Eng. Chem. Res.
,
47
(
10
), pp.
3291
3337
.10.1021/ie701760h
17.
Ghobadi
,
M.
, and
Muzychka
,
Y. S.
,
2016
, “
A Review of Heat Transfer and Pressure Drop Correlations for Laminar Flow in Curved Circular Ducts
,”
Heat Transfer Eng.
,
37
(
10
), pp.
815
839
.10.1080/01457632.2015.1089735
18.
Hussein
,
A. M.
,
Sharma
,
K.
,
Bakar
,
R.
, and
Kadirgama
,
K.
,
2014
, “
A Review of Forced Convection Heat Transfer Enhancement and Hydrodynamic Characteristics of a Nanofluid
,”
Renew. Sustain. Energy Rev.
,
29
, pp.
734
743
.10.1016/j.rser.2013.08.014
19.
Garoosi
,
F.
,
Hoseininejad
,
F.
, and
Rashidi
,
M. M.
,
2016
, “
Numerical Study of Natural Convection Heat Transfer in a Heat Exchanger Filled With Nanofluids
,”
Energy
,
109
, pp.
664
678
.10.1016/j.energy.2016.05.051
20.
Chiesa
,
M.
,
Garg
,
J.
,
Kang
,
Y. T.
, and
Chen
,
G.
,
2008
, “
Thermal Conductivity and Viscosity of Water-in-Oil Nanoemulsions
,”
Colloids Surf. A: Physicochem. Eng.
,
326
(
1–2
), pp.
67
72
.10.1016/j.colsurfa.2008.05.028
21.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C.
,
2011
, “
Experimental Study of Mixed Convection With Water–Al2O3 Nanofluid in Inclined Tube With Uniform Wall Heat Flux
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
403
410
.10.1016/j.ijthermalsci.2010.03.016
22.
Bahiraei
,
M.
, and
Hangi
,
M.
,
2014
, “
Numerical Simulation of Nanofluid Application in a C-Shaped Chaotic Channel: A Potential Approach for Energy Efficiency Improvement
,”
Energy
,
74
, pp.
863
870
.10.1016/j.energy.2014.07.061
23.
Philip
,
J.
, and
Shima
,
P.
,
2012
, “
Thermal Properties of Nanofluids
,”
Adv. Colloid Interface Sci.
,
183-184
, pp.
30
45
.10.1016/j.cis.2012.08.001
24.
Malvandi
,
A.
,
Moshizi
,
S.
, and
Ganji
,
D.
,
2016
, “
Two-Component Heterogeneous Mixed Convection of Alumina/Water Nanofluid in Microchannels With Heat Source/Sink
,”
Adv. Powder Technol.
,
27
(
1
), pp.
245
254
.10.1016/j.apt.2015.12.009
25.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Ferrohydrodynamic and Magnetohydrodynamic Effects on Ferrofluid Flow and Convective Heat Transfer
,”
Energy
,
75
, pp.
400
410
.10.1016/j.energy.2014.07.089
26.
Narrein
,
K.
, and
Mohammed
,
H.
,
2013
, “
Influence of Nanofluids and Rotation on Helically Coiled Tube Heat Exchanger Performance
,”
Thermochim. Acta
,
564
, pp.
13
23
.10.1016/j.tca.2013.04.004
27.
Pakdaman
,
M. F.
,
Akhavan-Behabadi
,
M.
, and
Razi
,
P.
,
2012
, “
An Experimental Investigation on Thermo-Physical Properties and Overall Performance of MWCNT/Heat Transfer Oil Nanofluid Flow Inside Vertical Helically Coiled Tubes
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
103
111
.10.1016/j.expthermflusci.2012.02.005
28.
Akbaridoust
,
F.
,
Rakhsha
,
M.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2013
, “
Experimental and Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes at Constant Wall Temperature Using Dispersion Model
,”
Int. J. Heat Mass Transf.
,
58
(
1–2
), pp.
480
491
.10.1016/j.ijheatmasstransfer.2012.11.064
29.
Jamal-Abad
,
M. T.
,
Zamzamian
,
A.
, and
Dehghan
,
M.
,
2013
, “
Experimental Studies on the Heat Transfer and Pressure Drop Characteristics of Cu–Water and Al–Water Nanofluids in a Spiral Coil
,”
Exp. Therm. Fluid Sci.
,
47
, pp.
206
212
.10.1016/j.expthermflusci.2013.02.001
30.
Aly
,
W. I.
,
2014
, “
Numerical Study on Turbulent Heat Transfer and Pressure Drop of Nanofluid in Coiled Tube-in-Tube Heat Exchangers
,”
Energy Convers. Manag.
,
79
, pp.
304
316
.10.1016/j.enconman.2013.12.031
31.
Bahremand
,
H.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2015
, “
Experimental and Numerical Investigation of Turbulent Nanofluid Flow in Helically Coiled Tubes Under Constant Wall Heat Flux Using Eulerian–Lagrangian Approach
,”
Powder Technol.
,
269
, pp.
93
100
.10.1016/j.powtec.2014.08.066
32.
Rakhsha
,
M.
,
Akbaridoust
,
F.
,
Abbassi
,
A.
, and
Majid
,
S.-A.
,
2015
, “
Experimental and Numerical Investigations of Turbulent Forced Convection Flow of Nano-Fluid in Helical Coiled Tubes at Constant Surface Temperature
,”
Powder Technol.
,
283
, pp.
178
189
.10.1016/j.powtec.2015.05.019
33.
Bagherzadeh
,
F.
,
Saffar-Avval
,
M.
,
Seyfi
,
M.
, and
Abbassi
,
A.
,
2017
, “
Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes Using the Four-Equation Model
,”
Adv. Powder Technol.
,
28
(
1
), pp.
256
265
.10.1016/j.apt.2016.09.011
34.
Ramadhan
,
A.
,
Azmi
,
W.
,
Mamat
,
R.
, and
Hamid
,
K.
,
2020
, “
Experimental and Numerical Study of Heat Transfer and Friction Factor of Plain Tube With Hybrid Nanofluids
,”
Case Stud. Therm. Eng.
,
22
, p.
100782
.10.1016/j.csite.2020.100782
35.
Gnanavel
,
C.
,
Saravanan
,
R.
, and
Chandrasekaran
,
M.
,
2020
, “
Heat Transfer Augmentation by Nano-Fluids and Spiral Spring Insert in Double Tube Heat Exchanger–A Numerical Exploration
,”
Mater. Today Proc.
,
21
, pp.
857
861
.10.1016/j.matpr.2019.07.602
36.
Alshahrani
,
S.
,
Jassim
,
E. I.
,
Ahmed
,
F.
, and
Jasem
,
B. I.
,
2021
, “
Performance and Environment Interactivity of Concentric Heat Exchanger Practicing TiO2 Nanofluid and Operated Near Heat Capacity Ratio of Unity
,”
Case Stud. Therm. Eng.
,
28
, p.
101702
.10.1016/j.csite.2021.101702
37.
Wei
,
H.
,
Moria
,
H.
,
Nisar
,
K. S.
,
Ghandour
,
R.
,
Issakhov
,
A.
,
Sun
,
Y.-L.
,
Kaood
,
A.
, and
Youshanlouei
,
M. M.
,
2021
, “
Effect of Volume Fraction and Size of Al2O3 Nanoparticles in Thermal, Frictional and Economic Performance of Circumferential Corrugated Helical Tube
,”
Case Stud. Therm. Eng.
,
25
, p.
100948
.10.1016/j.csite.2021.100948
38.
Hozien
,
O.
,
El-Maghlany
,
W. M.
,
Sorour
,
M. M.
, and
Mohamed
,
Y. S.
,
2021
, “
Experimental Study on Heat Transfer and Pressure Drop Characteristics Utilizing Three Types of Water Based Nanofluids in a Helical Coil Under Isothermal Boundary Condition
,”
J. Taiwan Inst. Chem. Eng.
,
128
, pp.
237
252
.10.1016/j.jtice.2021.08.028
39.
Hasan
,
M. J.
,
Ahmed
,
S. F.
, and
Bhuiyan
,
A. A.
,
2022
, “
Geometrical and Coil Revolution Effects on the Performance Enhancement of a Helical Heat Exchanger Using Nanofluids
,”
Case Stud. Therm. Eng.
,
35
, p.
102106
.10.1016/j.csite.2022.102106
40.
Pawar
,
S.
, and
Sunnapwar
,
V. K.
,
2014
, “
Experimental and CFD Investigation of Convective Heat Transfer in Helically Coiled Tube Heat Exchanger
,”
Chem. Eng. Res. Des.
,
92
(
11
), pp.
2294
2312
.10.1016/j.cherd.2014.01.016
41.
Cioncolini
,
A.
, and
Santini
,
L.
,
2006
, “
An Experimental Investigation Regarding the Laminar to Turbulent Flow Transition in Helically Coiled Pipes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
367
380
.10.1016/j.expthermflusci.2005.08.005
42.
Sert
,
İO.
, and
Sezer-Uzol
,
N.
,
2016
, “
Numerical Analysis of Convective Heat Transfer of Nanofluids in Circular Ducts With Two-Phase Mixture Model Approach
,”
Heat Mass Transf.
,
52
(
9
), pp.
1841
1850
.10.1007/s00231-015-1655-7
43.
Safaei
,
M. R.
,
Jahanbin
,
A.
,
Kianifar
,
A.
, and
Gharehkhani
,
S.
,
2016
, “
Mathematical Modeling for Nanofluids Simulation: A Review of the Latest Works
,”
Modeling and Simulation in Engineering Sciences
,
Intech
, London, UK, pp.
189
220
.
44.
Tavousi
,
E.
,
Perera
,
N.
,
Flynn
,
D.
, and
Hasan
,
R.
,
2023
, “
Numerical Investigation of Laminar Heat Transfer and Fluid Flow Characteristics of Al2O3 Nanofluid in a Double Tube Heat Exchanger
,”
Int. J. Numer. Methods Heat Fluid Flow
,
33
(
12
), pp.
3994
4014
.10.1108/HFF-03-2023-0114
45.
Onyiriuka
,
E.
,
2024
, “
Optimising Al2O3–Water Nanofluid
,”
BNRC
,
48
(
1
), p.
2
.10.1186/s42269-023-01162-2
46.
Maiga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
.10.1016/j.ijheatfluidflow.2005.02.004
47.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manag.
,
52
(
1
), pp.
789
793
.10.1016/j.enconman.2010.06.072
48.
Mirfendereski
,
S.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2015
, “
Experimental and Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes at Constant Wall Heat Flux
,”
Adv. Powder Technol.
,
26
(
5
), pp.
1483
1494
.10.1016/j.apt.2015.08.006
49.
Nam
,
H. T.
,
Lee
,
S.
,
Kong
,
M.
, and
Lee
,
S.
,
2023
, “
Numerical Study of Flow and Heat Transfer Characteristics for Al2O3 Nanofluid in a Double-Pipe Helical Coil Heat Exchanger
,”
Micromachines
,
14
(
12
), p.
2219
.10.3390/mi14122219
50.
Habeeb
,
L. J.
,
Saleh
,
F. A.
, and
Maajel
,
B. M.
,
2019
, “
CFD Modeling of Laminar Flow and Heat Transfer Utilizing Al2O3/Water Nanofluid in a Finned-Tube With Twisted Tape
,”
FME Trans.
,
47
(
1
), pp.
89
100
.10.5937/fmet1901089H
51.
Hart
,
J.
,
Ellenberger
,
J.
, and
Hamersma
,
P.
,
1988
, “
Single-and Two-Phase Flow Through Helically Coiled Tubes
,”
Chem. Eng. Sci.
,
43
(
4
), pp.
775
783
.10.1016/0009-2509(88)80072-1
52.
Ju
,
H.
,
Huang
,
Z.
,
Xu
,
Y.
,
Duan
,
B.
, and
Yu
,
Y.
,
2001
, “
Hydraulic Performance of Small Bending Radius Helical Coil-Pipe
,”
J. Nucl. Sci. Technol.
,
38
(
10
), pp.
826
831
.10.1080/18811248.2001.9715102
53.
Mishra
,
P.
, and
Gupta
,
S.
,
1979
, “
Momentum Transfer in Curved Pipes. 1. Newtonian Fluids
,”
Ind. Eng. Chem. Proc. Des. Devel.
,
18
(
1
), pp.
130
137
.10.1021/i260069a017
54.
Liu
,
M.
,
Zhang
,
Z.
,
Yang
,
X.
, and
Jiang
,
S.
,
2023
, “
Heat Transfer of Supercritical Pressure Water in Helical Tubes
,”
Front. Energy Res.
,
11
, p.
1129469
.10.3389/fenrg.2023.1129469
55.
Mirzaee
,
H.
,
Rafee
,
R.
,
Rashidi
,
S.
, and
Ahmadi
,
G.
,
2020
, “
Evaluation of Different Numerical Models for Prediction of Pressure Drop in Laminar Nanofluid Flows
,”
Energy Sources Part A.
, pp.
1
19
.10.1080/15567036.2020.1810178
56.
Moshizi
,
S. A.
,
Zamani
,
M.
,
Hosseini
,
S. J.
, and
Malvandi
,
A.
,
2017
, “
Mixed Convection of Magnetohydrodynamic Nanofluids Inside Microtubes at Constant Wall Temperature
,”
J. Magn. Magn. Mater.
,
430
, pp.
36
46
.10.1016/j.jmmm.2017.01.053
57.
Naphon
,
P.
, and
Suwagrai
,
J.
,
2007
, “
Effect of Curvature Ratios on the Heat Transfer and Flow Developments in the Horizontal Spirally Coiled Tubes
,”
Int. J. Heat Mass Transf.
,
50
(
3–4
), pp.
444
451
.10.1016/j.ijheatmasstransfer.2006.08.002
You do not currently have access to this content.