Abstract

Heat transport through three-dimensional printed fractal media is investigated by comparing a fractal diffusion model to infrared measurements using Bayesian uncertainty quantification. The delayed rejection adaptive metropolis (DRAM) algorithm, based on the Markov Chain Monte Carlo (MCMC) sampling technique, is used to infer parameter uncertainty, quantify parameter correlation, and compute error propagation of the temperature distributions. The results demonstrate that fractal operators improve modeling thermal transport through complex fractal structures and help understand fractal structure–property relationships. For example, correlations among fractal spatial and temporal scaling parameters, diffusion coefficients, and fractal dimensions are quantified. We find a scaling relationship between the diffusion coefficient D and the temporal fractal time derivative order α that scales nominally as Deα based on constraints from the second law of thermodynamics. The results have implications for building a stronger understanding of heat transport in complex materials beyond random media and models based on Gaussian probability homogenization.

References

1.
West
,
B. J.
, and
Grigolini
,
P.
,
2010
,
Complex Webs: Anticipating the Improbable
,
Cambridge University Press, Cambridge, London, UK.
2.
Aguirre
,
J.
,
Viana
,
R. L.
, and
Sanjuán
,
M. A.
,
2009
, “
Fractal Structures in Nonlinear Dynamics
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
333
386
.10.1103/RevModPhys.81.333
3.
Salat
,
H.
,
Murcio
,
R.
, and
Arcaute
,
E.
,
2017
, “
Multifractal Methodology
,”
Phys. A: Stat. Mech. Its Appl.
,
473
, pp.
467
487
.10.1016/j.physa.2017.01.041
4.
Schroeder
,
M.
,
2009
,
Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise
,
Dover Publications Inc., Mineola, NY
.
5.
Falconer
,
K.
,
2004
,
Fractal Geometry: Mathematical Foundations and Applications
,
Wiley
, Hoboken, NJ.
6.
Ramesh
,
D.
,
Stanisauskis
,
E.
,
Consoliver-Zack
,
J.
,
Pahari
,
B. R.
, and
Oates
,
W. S.
,
2022
, “
Characterization and Uncertainty Analysis of Heat Transport in 3D Printed Multifractal Media
,”
ASME
Paper No. SMASIS2022-89537.10.1115/SMASIS2022-89537
7.
Oates
,
W. S.
,
Wang
,
H.
, and
Sierakowski
,
R. L.
,
2012
, “
Unusual Field-Coupled Nonlinear Continuum Mechanics of Smart Materials
,”
J. Intell. Mater. Syst. Struct.
,
23
(
5
), pp.
487
504
.10.1177/1045389X11435994
8.
Mei
,
C. C.
, and
Vernescu
,
B.
,
2010
,
Homogenization Methods for Multiscale Mechanics
,
World Scientific
, Singapore.
9.
Horstemeyer
,
M. F.
,
2010
, “
Multiscale Modeling: A Review
,”
Practical Aspects Computational Chemistry: Methods, Concepts Applications
, Springer, Dordrecht, The Netherlands, pp.
87
135
.10.1007/978-90-481-2687-3_4
10.
Buehler
,
M. J.
,
2010
, “
Multiscale Mechanics of Biological and Biologically Inspired Materials and Structures
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
471
483
.10.1016/S0894-9166(11)60001-3
11.
Havlin
,
S.
, and
Ben-Avraham
,
D.
,
1987
, “
Diffusion in Disordered Media
,”
Adv. Phys.
,
36
(
6
), pp.
695
798
.10.1080/00018738700101072
12.
West
,
B. J.
,
Grigolini
,
P.
,
Metzler
,
R.
, and
Nonnenmacher
,
T. F.
,
1997
, “
Fractional Diffusion and Lévy Stable Processes
,”
Phys. Rev. E
,
55
(
1
), pp.
99
106
.10.1103/PhysRevE.55.99
13.
Mainardi
,
F.
,
2020
, “
Why the Mittag-Leffler Function Can be Considered the Queen Function of the Fractional Calculus?
,”
Entropy
,
22
(
12
), p.
1359
.10.3390/e22121359
14.
Stanisauskis
,
E.
,
Mashayekhi
,
S.
,
Pahari
,
B.
,
Mehnert
,
M.
,
Steinmann
,
P.
, and
Oates
,
W.
,
2022
, “
Fractional and Fractal Order Effects in Soft Elastomers: Strain Rate and Temperature Dependent Nonlinear Mechanics
,”
Mech. Mater.
,
172
, p.
104390
.10.1016/j.mechmat.2022.104390
15.
Tarasov
,
V. E.
,
2011
,
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
,
Springer Science & Business Media, Berlin, Germany
.
16.
Atangana
,
A.
,
2017
, “
Fractal-Fractional Differentiation and Integration: Connecting Fractal Calculus and Fractional Calculus to Predict Complex System
,”
Chaos, Solitons Fractals
,
102
, pp.
396
406
.10.1016/j.chaos.2017.04.027
17.
Pahari
,
B. R.
,
Stanisauskis
,
E.
,
Mashayekhi
,
S.
, and
Oates
,
W.
,
2023
, “
An Entropy Dynamics Approach for Deriving and Applying Fractal and Fractional Order Viscoelasticity to Elastomers
,”
ASME J. Appl. Mech.
,
90
(
8
), p.
081009
.10.1115/1.4062389
18.
Carvajal
,
M. A.
,
Pahari
,
B. R.
, and
Oates
,
W.
,
2023
, “
Finite Difference Modeling of Heat Diffusion on Diffusion-Limited Aggregation Generated Fractal Structures
,”
SPIE Smart Structures + Nondestructive Evaluation
, Long Beach, CA, Mar. 12–17, pp.
41
50
.10.1117/12.2658500
19.
Liu
,
X.
,
Sun
,
H.
,
Lazarevic
,
P. M.
, and
Fu
,
Z.
,
2017
, “
A Variable-Order Fractal Derivative Model for Anomalous Diffusion
,”
Therm. Sci.
,
21
(
1 Part A
), pp.
51
59
.10.2298/TSCI160415244L
20.
Wozniak
,
M.
,
Onofri
,
F. R. A.
,
Barbosa
,
S.
,
Yon
,
J.
, and
Mroczka
,
J.
,
2012
, “
Comparison of Methods to Derive Morphological Parameters of Multi-Fractal Samples of Particle Aggregates From TEM Images
,”
J. Aerosol Sci.
,
47
, pp.
12
26
.10.1016/j.jaerosci.2011.12.008
21.
Kazhdan
,
M.
, and
Hoppe
,
H.
,
2013
, “
Screened Poisson Surface Reconstruction
,”
ACM Trans. Graph. (TOG
),
32
(
3
), pp.
1
13
.10.1145/2487228.2487237
22.
Prajapati
,
H.
,
Ravoori
,
D.
,
Woods
,
R. L.
, and
Jain
,
A.
,
2018
, “
Measurement of Anisotropic Thermal Conductivity and Inter-Layer Thermal Contact Resistance in Polymer Fused Deposition Modeling (Fdm)
,”
Addit. Manuf.
,
21
, pp.
84
90
.10.1016/j.addma.2018.02.019
23.
Foroutan-Pour
,
K.
,
Dutilleul
,
P.
, and
Smith
,
D. L.
,
1999
, “
Advances in the Implementation of the Box-Counting Method of Fractal Dimension Estimation
,”
Appl. Math. Comput.
,
105
(
2–3
), pp.
195
210
.10.1016/S0096-3003(98)10096-6
24.
Peitgen
,
H.-O.
,
Jürgens
,
H.
,
Saupe
,
D.
, and
Feigenbaum
,
M. J.
,
2004
,
Chaos and Fractals: New Frontiers of Science
, Vol.
106
,
Springer
, Berlin, Germany.
25.
Haario
,
H.
,
Laine
,
M.
,
Mira
,
A.
, and
Saksman
,
E.
,
2006
, “
Dram: Efficient Adaptive Mcmc
,”
Stat. Comput.
,
16
(
4
), pp.
339
354
.10.1007/s11222-006-9438-0
26.
Orellana Barrasa
,
J.
,
Ferrández-Montero
,
A.
,
Ferrari
,
B.
, and
Pastor
,
J. Y.
,
2021
, “
Characterisation and Modelling of PLA Filaments and Evolution With Time
,”
Polymers
,
13
(
17
), p.
2899
.10.3390/polym13172899
27.
Smith
,
R. C.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
28.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
.10.1103/PhysRev.106.620
29.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics. II
,”
Phys. Rev.
,
108
(
2
), pp.
171
190
.10.1103/PhysRev.108.171
30.
Malvern
,
L. E.
,
1969
,
Introduction to the Mechanics of a Continuous Medium
,
Prentice Hall Inc
.,
Englewood Cliffs, NJ
.
31.
Özis
,
Ik
,
M. N.
, and
Tzou
,
D. Y.
,
1994
, “
On the Wave Theory in Heat Conduction
,”
ASME J. Heat Mass Transfer Trans. ASME
,
116
(
3
), pp.
526
535
.10.1115/1.2910903
32.
Joseph
,
D. D.
, and
Preziosi
,
L.
,
1989
, “
Heat Waves
,”
Rev. Modern Physics
,
61
(
1
), pp.
41
73
.10.1103/RevModPhys.61.41
33.
Gómez-Aguilar
,
J.
,
Razo-Hernández
,
R.
, and
Granados-Lieberman
,
D.
,
2014
, “
A Physical Interpretation of Fractional Calculus in Observables Terms: Analysis of the Fractional Time Constant and the Transitory Response
,”
Rev. Mexicana de Física
,
60
(
1
), pp.
32
38
.https://www.researchgate.net/publication/261190469_A_physical_interpretation_of_fractional_calculus_in_observables_terms_Analysis_of_the_fractional_time_constant_and_the_transitory_response
34.
Pahari
,
B. R.
, and
Oates
,
W.
,
2024
, “
An Entropy Dynamics Approach to Inferring Fractal-Order Complexity in the Electromagnetics of Solids
,”
Entropy
,
26
(
12
), p.
1103
.10.3390/e26121103
35.
Mashayekhi
,
S.
,
Hussaini
,
M. Y.
, and
Oates
,
W.
,
2019
, “
A Physical Interpretation of Fractional Viscoelasticity Based on the Fractal Structure of Media: Theory and Experimental Validation
,”
J. Mech. Phys. Solids
,
128
, pp.
137
150
.10.1016/j.jmps.2019.04.005
36.
Moore
,
W.
,
1972
,
Physical Chemistry
,
Prentice Hall, Inc
.,
Englewood Cliffs, NJ
.
37.
Cates
,
M.
,
1985
, “
Brownian Dynamics of Self-Similar Macromolecules
,”
J. de Phys.
,
46
(
7
), pp.
1059
1077
.10.1051/jphys:019850046070105900
You do not currently have access to this content.