Abstract

The complex dynamic behaviors of legged locomotion on stationary terrain have been extensively analyzed using a simplified dynamic model called the spring-loaded inverted pendulum (SLIP) model. However, legged locomotion on dynamic platforms has not been thoroughly investigated even by using a simplified dynamic model such as SLIP. In this paper, we present the modeling, analysis, and control of a SLIP model running on dynamic platforms. Three types of dynamic platforms are considered: (a) a sinusoidally excited rigid-body platform; (b) a spring-supported rigid-body platform; and (c) an Euler–Bernoulli beam. These platforms capture some important domains of real-world locomotion terrain (e.g., harmonically excited platforms, suspended floors, and bridges). The interaction force model and the equations of motion of the SLIP-platform systems are derived. Numerical simulations of SLIP running on the three types of dynamic platforms reveal that the platform movement can destabilize the SLIP even when the initial conditions of the SLIP motion are within the domain of attraction of its motion on flat, stationary platforms. A simple control strategy that can sustain the forward motion of a SLIP on dynamic platforms is then synthesized. The effectiveness of the proposed control strategy in sustaining SLIP motion on dynamic platforms is validated through simulations.

References

1.
Full
,
R.
, and
Koditschek
,
D.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
23
), pp.
3325
32
.
2.
Blickhan
,
R.
,
1989
, “
The Spring-Mass Model for Running & Hopping
,”
J. Biomech.
,
22
(
11
), pp.
1217
1227
. 10.1016/0021-9290(89)90224-8
3.
Alexander
,
R. M.
,
1990
, “
Three Uses for Springs in Legged Locomotion
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
53
61
. 10.1177/027836499000900205
4.
Ghigliazza
,
R. M.
,
Altendorfer
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D. E.
,
2003
, “
A Simply Stabilized Running Model
,”
SIAM J. Appl. Dyn. Syst.
,
2
(
2
), pp.
187
218
. 10.1137/S1111111102408311
5.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2005
, “
Spring-Mass Running: Simple Approximate Solution and Application to Gait Stability
,”
J. Theor. Biol.
,
232
(
3
), pp.
315
28
. 10.1016/j.jtbi.2004.08.015
6.
Schmitt
,
J.
, and
Holmes
,
P.
,
2000
, “
Mechanical Models for Insect Locomotion: Dynamics and Stability in Horizontal Plane-II.
,”
Biol. Cybern.
,
83
(
6
), pp.
517
527
. 10.1007/s004220000180
7.
Piovan
,
G.
, and
Byl
,
K.
,
2012
, “
Enforced Symmetry of the Stance Phase for the Spring-Loaded Inverted Pendulum
,”
Proc. IEEE Int. Conf. Rob. Autom.
,
St. Paul, MN
,
May 14
, pp.
1908
1914
.
8.
Wu
,
A.
, and
Geyer
,
H.
,
2013
, “
The 3-d Spring-Mmass Model Reveals a Time-Based Deadbeat Control for Highly Robust Running and Steering in Uncertain Environments
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1114
1124
. 10.1109/TRO.2013.2263718
9.
Spence
,
A. J.
,
Revzen
,
S.
,
Seipel
,
J.
,
Mullens
,
C. H.
, and
Full
,
R. J.
,
2010
, “
Insects Running on Elastic Surfaces.
,”
J. Exp. Biol.
,
213
(
11
), pp.
1907
1920
. 10.1242/jeb.042515
10.
Moritz
,
C. T.
, and
Farley
,
C. T.
,
2005
, “
Human Hopping on Very Soft Elastic Surfaces: Implications for Muscle Pre-Stretch and Elastic Energy Storage in Locomotion
,”
J. Exp. Biol.
,
208
(
5
), pp.
939
949
. 10.1242/jeb.01472
11.
Blickhan
,
R.
, and
Full
,
R. J.
,
1993
, “
Similarity in Multilegged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol. A
,
173
(
5
), pp.
509
517
. 10.1007/BF00197760
12.
Voloshina
,
A. S.
, and
Ferris
,
D. P.
,
2015
, “
Biomechanics and Energetics of Running on Uneven Terrain
,”
J. Exp. Biol.
,
218
(
Pt 5
), pp.
711
719
. 10.1242/jeb.106518
13.
Waters
,
R. L.
, and
Mulroy
,
S.
,
1999
, “
The Energy Expenditure of Normal and Pathologic Gait
,”
Gait Posture
,
9
(
3
), pp.
207
231
. 10.1016/S0966-6362(99)00009-0
14.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
John Wiley & Sons, Inc
.,
Hoboken, NJ
.
15.
Ferris
,
D. P.
,
Louie
,
M.
, and
Farley
,
C. T.
,
1998
, “
Running in the Real World: Adjusting Leg Stiffness for Different Surfaces.
,”
Proc. Biolog. Sci.
,
265
(
1400
), pp.
989
994
. 10.1098/rspb.1998.0388
16.
Abdel–Ghaffar
,
A. M.
, and
Scanlan
,
R. H.
,
1985
, “
Ambient Vibration Studies of Golden Gate Bridge: I. Susp. Structure
,”
J. Eng. Mech.
,
111
(
4
), pp.
463
482
. 10.1061/(ASCE)0733-9399(1985)111:4(463)
17.
Pakzad
,
S. N.
, and
Fenves
,
G. L.
,
2009
, “
Statistical Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network
,”
J. Struct. Eng.
,
135
(
7
), pp.
863
872
. 10.1061/(ASCE)ST.1943-541X.0000033
You do not currently have access to this content.