Abstract

In this research, a novel method is developed to manipulate smart structures' natural frequencies to eliminate or alleviate the detrimental effects caused by vibrating close to the natural frequencies. To this end, this work considers a sandwich plate structure with Terfenol-D, which is a magnetostrictive material, comprising its middle layer. The stiffness of this smart material changes based on the magnetic field that it is exposed to. Thus, natural frequencies and resonances of the whole structure can be manipulated. Furthermore, in this research, the Terfenol-D in the middle layer is divided into five parallel sections so that each of them can be controlled separately. Therefore, it is possible to selectively activate portions of the magnetostrictive layers that run parallel along one of the plate's directions to create periodic changes in the structure's stiffness. Thus, the structure can be kept safe when excitations or disturbances approach one of its natural frequencies by activating sections to produce configurations that modify the natural frequencies. To this end, the structure's natural frequencies are obtained analytically for a thin plate with Kirchhoff equations. Then, the results are verified by the numerical results obtained using the finite element method. Moreover, activating certain portions of the Terfenol-D layer provides a periodic structure with a band gap that can filter out oscillatory motions with frequencies that fall within the band gap. This structure's band gap has been examined in two one-dimensional (1D) periodic, two two-dimensional (2D) periodic, and two non-periodic conditions using the finite element method.

References

1.
Rajoria
,
H.
, and
Jalili
,
N.
,
2005
, “
Passive Vibration Damping Enhancement Using Carbon Nanotube-Epoxy Reinforced Composites
,”
Compos. Sci. Technol.
,
65
(
14
), pp.
2079
2093
. 10.1016/j.compscitech.2005.05.015
2.
Jalili
,
N.
,
2010
, “An Overview of Active Materials Utilized in Smart Structures,”
Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems
, 1st ed.,
Springer
,
New York, NY
, ISBN 978-1-4419-0069-2, p.
517
with 293 figures.
3.
Bodaghi
,
M.
,
Shakeri
,
M.
, and
Aghdam
,
M. M.
,
2017
, “
Passive Vibration Control of Plate Structures Using Shape Memory Alloy Ribbons
,”
J. Vib. Control
,
23
(
1
), pp.
69
88
. 10.1177/1077546315575676
4.
Dutta
,
S. C.
, and
Majumder
,
R.
,
2019
, “Shape Memory Alloy (SMA) as a Potential Damper in Structural Vibration Control,”
Advances in Manufacturing Engineering and Materials
,
S.
Hloch
,
D.
Klichová
,
G. M.
Krolczyk
,
S.
Chattopadhyaya
,
L.
Ruppenthalová
, eds.,
Springer
,
Cham
, pp.
485
492
.
5.
Shan
,
W.
,
Diller
,
S.
,
Tutcuoglu
,
A.
, and
Majidi
,
C.
,
2015
, “
Rigidity-Tuning Conductive Elastomer
,”
Smart Mater. Struct.
,
24
(
6
), p.
065001
. 10.1088/0964-1726/24/6/065001
6.
Eslami
,
S.
, and
Jalili
,
N.
,
2016
, “
Model Development and Boundary Interaction Force Control of a Piezoresistive-Based Microcantilever
,”
Robotica
,
34
(
2
), pp.
328
346
. 10.1017/S0263574714001441
7.
Mehrvarz
,
A.
,
Ardekani
,
A. N.
,
Khodaei
,
M. J.
, and
Jalili
,
N.
,
2019
, “
Vibration Analysis and Control of Fluid Containers Using Piezoelectrically-Excited Side Wall
,”
J. Vib. Control
,
25
(
7
), pp.
1393
1408
. 10.1177/1077546318822374
8.
Salehzadeh
,
R.
,
Candelino
,
N.
,
Khodaei
,
M. J.
,
Mehrvarz
,
A.
, and
Jalili
,
N.
,
2020
, “
Parameter Sensitivity Analysis of Piezoelectrically-Actuated Flexural/Torsional Vibrating Beams
,”
Dynamic Systems and Control Conference
,
Pittsburgh, PA
,
Oct. 5–7
,
Virtual
.
9.
Bradley
,
C.
,
Jalili
,
N.
,
Nett
,
S. K.
,
Chu
,
L.
,
Förch
,
R.
,
Gutmann
,
J. S.
, and
Berger
,
R.
,
2009
, “
Response Characteristics of Thermoresponsive Polymers Using Nanomechanical Cantilever Sensors
,”
Macromol. Chem. Phys.
,
210
(
16
), pp.
1339
1345
. 10.1002/macp.200900081
10.
Ramaratnam
,
A.
, and
Jalili
,
N.
,
2006
, “
Reinforcement of Piezoelectric Polymers With Carbon Nanotubes: Pathway to Next-Generation Sensors
,”
J. Intell. Mater. Syst. Struct.
,
17
(
3
), pp.
199
208
. 10.1177/1045389X06055282
11.
Akbarzadeh
,
A. H.
,
Arian Nik
,
M.
, and
Pasini
,
D.
,
2016
, “
Vibration Responses and Suppression of Variable Stiffness Laminates With Optimally Steered Fibers and Magnetostrictive Layers
,”
Composites Part B
,
91
, pp.
315
326
. 10.1016/j.compositesb.2016.02.003
12.
Deng
,
Z.
, and
Dapino
,
M. J.
,
2018
, “
Review of Magnetostrictive Materials for Structural Vibration Control
,”
Smart Mater. Struct.
,
27
(
11
), p.
113001
. 10.1088/1361-665X/aadff5
13.
Testoni
,
O.
,
Bergamini
,
A.
,
Bodkhe
,
S.
, and
Ermanni
,
P.
,
2019
, “
Smart Material Based Mechanical Switch Concepts for the Variation of Connectivity in the Core of Shape-Adaptable Sandwich Panels
,”
Smart Mater. Struct.
,
28
(
2
), p.
025036
. 10.1088/1361-665X/aafa40
14.
Ying
,
Z. G.
, and
Ni
,
Y. Q.
,
2009
, “
Micro-Vibration Response of a Stochastically Excited Sandwich Beam With a Magnetorheological Elastomer Core and Mass
,”
Smart Mater. Struct.
,
18
(
9
), p.
095005
. 10.1088/0964-1726/18/9/095005
15.
Lara-Prieto
,
V.
,
Parkin
,
R.
,
Jackson
,
M.
,
Silberschmidt
,
V.
, and
Kęsy
,
Z.
,
2009
, “
Vibration Characteristics of MR Cantilever Sandwich Beams: Experimental Study
,”
Smart Mater. Struct.
,
19
(
1
), p.
015005
. 10.1088/0964-1726/19/1/015005
16.
Honda
,
K.
, and
Terada
,
T.
,
1907
, “
II. On the Change of Elastic Constants of Ferromagnetic Substances by Magnetization
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
,
13
(
73
), pp.
36
83
. 10.1080/14786440709463584
17.
Darnell
,
F. J.
,
1963
, “
Magnetostriction in Dysprosium and Terbium
,”
Phys. Rev.
,
132
(
1
), p.
128
. 10.1103/PhysRev.132.128
18.
Karafi
,
M. R.
, and
Korivand
,
S.
,
2019
, “
Design and Fabrication of a Novel Vibration-Assisted Drilling Tool Using a Torsional Magnetostrictive Transducer
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2095
2106
. 10.1007/s00170-018-03274-w
19.
Karafi
,
M. R.
,
Hojjat
,
Y.
,
Sassani
,
F.
, and
Ghodsi
,
M.
,
2013
, “
A Novel Magnetostrictive Torsional Resonant Transducer
,”
Sens. Actuators, A
,
195
, pp.
71
78
. 10.1016/j.sna.2013.03.015
20.
Zheng
,
J.
,
Cao
,
S.
, and
Pan
,
R.
,
2018
, “
Structural Dynamic Modeling and Optimization for Vibration Control of a Composite Cantilever With Magnetostrictive Shunt Damper
,”
2018 IEEE International Magnetics Conference (INTERMAG)
,
Singapore
,
Apr. 23–27
.
21.
Deng
,
Z.
, and
Dapino
,
M. J.
,
2017
, “
Review of Magnetostrictive Vibration Energy Harvesters
,”
Smart Mater. Struct.
,
26
(
10
), p.
103001
. 10.1088/1361-665X/aa8347
22.
Mohammadi
,
S.
, and
Esfandiari
,
A.
,
2015
, “
Magnetostrictive Vibration Energy Harvesting Using Strain Energy Method
,”
Energy
,
81
, pp.
519
525
. 10.1016/j.energy.2014.12.065
23.
Jalili
,
N.
, and
Esmailzadeh
,
E.
,
2005
,
Vibration and Shock Handbook
, 1st ed.,
C. W.
de Silva
, ed., Vol.
23
,
CRC Press LLC
,
Boca Raton, FL
, pp.
1047
1092
.
24.
Jalili
,
N.
, and
Systems
,
S.-A. S.
,
2001
, “The Mechanical Systems Design Handbook: Modeling, Measurement, and Control,”
The Electrical Engineering Handbook Series
,
Y.
Hurmuzlu
, and
O. D. I.
Nwokah
, eds.,
CRC Press
,
Boca Raton, FL
.
25.
Xiang
,
H. J.
,
Shi
,
Z. F.
,
Wang
,
S. J.
, and
Mo
,
Y. L.
,
2012
, “
Vibration Attenuation and Frequency Band Gaps in Layered Periodic Foundation: Theory and Experiment
,”
Proceedings of the 15th World Conference on Earthquake Engineering
,
Lisbon, Portugal
,
Sept. 24–28
.
26.
Li
,
X.
,
Wu
,
F.
,
Hu
,
H.
,
Zhong
,
S.
, and
Liu
,
Y.
,
2002
, “
Large Acoustic Band Gaps Created by Rotating Square Rods in Two-Dimensional Periodic Composites
,”
J. Phys. D: Appl. Phys.
,
36
(
1
), p.
L15
L17
. 10.1088/0022-3727/36/1/104
27.
Zhang
,
X.
,
Jackson
,
T.
,
Lafond
,
E.
,
Deymier
,
P.
, and
Vasseur
,
J.
,
2006
, “
Evidence of Surface Acoustic Wave Band Gaps in the Phononic Crystals Created on Thin Plates
,”
Appl. Phys. Lett.
,
88
(
4
), p.
041911
. 10.1063/1.2167794
28.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
, Vol.
464
,
Wiley
,
New York
.
29.
Zenkert
,
D.
,
1995
,
An Introduction to Sandwich Construction
,
Engineering Materials Advisory Services
,
Sheffield, UK
.
30.
Kellogg
,
R.
, and
Flatau
,
A.
,
2008
, “
Experimental Investigation of Terfenol-D’s Elastic Modulus
,”
J. Intell. Mater. Syst. Struct.
,
19
(
5
), pp.
583
595
. 10.1177/1045389X07077854
31.
Chopra
,
I.
,
1974
, “
Vibration of Stepped Thickness Plates
,”
Int. J. Mech. Sci.
,
16
(
6
), pp.
337
344
. 10.1016/0020-7403(74)90007-1
32.
Gazonas
,
G. A.
,
Weile
,
D. S.
,
Wildman
,
R.
, and
Mohan
,
A.
,
2006
, “
Genetic Algorithm Optimization of Phononic Bandgap Structures
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5851
5866
. 10.1016/j.ijsolstr.2005.12.002
33.
Riva
,
E.
,
Rosa
,
M. I.
, and
Ruzzene
,
M.
,
2020
, “
Edge States and Topological Pumping in Stiffness-Modulated Elastic Plates
,”
Phys. Rev. B
,
101
(
9
), p.
094307
. 10.1103/PhysRevB.101.094307
34.
Chiroiu
,
V.
,
Munteanu
,
L.
,
Rugina
,
C.
,
Dumitriu
,
D.
, and
Delsanto
,
P. P.
,
2016
, “
The Optimization of Full Band-Gaps in Multilayer Films
,”
Rom. J. Tech. Sci. Appl. Mech.
,
61
(
2
), pp.
113
124
.
You do not currently have access to this content.