Abstract

Connected and autonomous vehicles have the potential to minimize energy consumption by optimizing the vehicle velocity and powertrain dynamics with Vehicle-to-Everything info en route. Existing deterministic and stochastic methods created to solve the eco-driving problem generally suffer from high computational and memory requirements, which makes online implementation challenging. This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network. The neural network learns a full-route value function to account for the variability in route information and is then used to approximate the terminal cost in a receding horizon optimization. Simulations over real-world routes demonstrate that the proposed approach achieves comparable performance to a stochastic optimization solution obtained via reinforcement learning, while requiring no sophisticated training paradigm and negligible on-board memory.

References

1.
Zhu
,
Z.
,
Pivaro
,
N.
,
Gupta
,
S.
,
Gupta
,
A.
, and
Canova
,
M.
,
2022
, “
Safe Model-Based Off-Policy Reinforcement Learning for Eco-Driving in Connected and Automated Hybrid Electric Vehicles
,”
IEEE Trans. Intell. Veh
,
7
(
2
), pp.
387
398
.
2.
Tajalli
,
M.
,
Mehrabipour
,
M.
, and
Hajbabaie
,
A.
,
2020
, “
Network-Level Coordinated Speed Optimization and Traffic Light Control for Connected and Automated Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
22
(
11
), pp.
6748
6759
.
3.
Amini
,
M. R.
,
Gong
,
X.
,
Feng
,
Y.
,
Wang
,
H.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Sequential Optimization of Speed, Thermal Load, and Power Split in Connected Hevs
,”
2019 American Control Conference (ACC)
,
Philadelphia, PA
,
July 10–12
, IEEE, pp.
4614
4620
.
4.
Deshpande
,
S. R.
,
Gupta
,
S.
,
Gupta
,
A.
, and
Canova
,
M.
,
2022
, “
Real-Time Ecodriving Control in Electrified Connected and Autonomous Vehicles Using Approximate Dynamic Programing
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
1
), p.
011111
.
5.
Han
,
J.
,
Shen
,
D.
,
Jeong
,
J.
,
Di Russo
,
M.
,
Kim
,
N.
,
Grave
,
J. J.
,
Karbowski
,
D.
,
Rousseau
,
A.
, and
Stutenberg
,
K. M.
,
2023
, “
Energy Impact of Connecting Multiple Signalized Intersections to Energy-Efficient Driving: Simulation and Experimental Results
,”
IEEE Control Syst. Lett.
,
7
, pp.
1297
1302
.
6.
Hyeon
,
E.
,
Han
,
J.
,
Shen
,
D.
,
Karbowski
,
D.
,
Kim
,
N.
, and
Rousseau
,
A.
,
2022
, “
Potential Energy Saving of V2V-Connected Vehicles in Large-Scale Traffic
,”
IFAC-Pap.
,
55
(
24
), pp.
78
83
.
7.
Uebel
,
S.
,
Murgovski
,
N.
,
Tempelhahn
,
C.
, and
Baker
,
B.
,
2017
, “
Optimal Energy Management and Velocity Control of Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
67
(
1
), pp.
327
337
.
8.
Gupta
,
S.
,
2019
, “
Look-Ahead Optimization of a Connected and Automated 48v Mild-Hybrid Electric Vehicle
,”
Master thesis
,
The Ohio State University
,
Columbus, OH
.
9.
Borek
,
J.
,
Groelke
,
B.
,
Earnhardt
,
C.
, and
Vermillion
,
C.
,
2019
, “
Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1652
1664
.
10.
Zhu
,
Z.
,
Gupta
,
S.
,
Pivaro
,
N.
,
Deshpande
,
S. R.
, and
Canova
,
M.
,
2021
, “
A GPU Implementation of a Look-Ahead Optimal Controller for Eco-Driving Based on Dynamic Programming
,”
2021 European Control Conference (ECC)
,
Rotterdam, Netherlands
,
June 29–July 2
, IEEE, pp.
899
904
.
11.
Lee
,
H.
,
Kim
,
N.
, and
Cha
,
S. W.
,
2020
, “
Model-Based Reinforcement Learning for Eco-Driving Control of Electric Vehicles
,”
IEEE Access
,
8
, pp.
202886
202896
.
12.
Wegener
,
M.
,
Koch
,
L.
,
Eisenbarth
,
M.
, and
Andert
,
J.
,
2021
, “
Automated Eco-Driving in Urban Scenarios Using Deep Reinforcement Learning
,”
Transp. Res. C Emerg. Technol.
,
126
, p.
102967
.
13.
Olin
,
P.
,
Aggoune
,
K.
,
Tang
,
L.
,
Confer
,
K.
,
Kirwan
,
J.
,
Deshpande
,
S. R.
,
Gupta
,
S.
,
Tulpule
,
P.
,
Canova
,
M.
, and
Rizzoni
,
G.
,
2019
, “Reducing fuel consumption by using information from connected and automated vehicle modules to optimize propulsion system control,” Tech. Rep., SAE Technical Paper.
14.
Krajzewicz
,
D.
,
Hertkorn
,
G.
,
Rossel
,
C.
, and
Wagner
,
P.
,
2002
, “
SUMO (Simulation of Urban Mobility)-An Open-Source Traffic Simulation
,”
Proceedings of the 4th Middle East Symposium on Simulation and Modelling (MESM2002)
,
Sharjah, UAE
,
Oct. 28–30
, pp.
183
187
.
You do not currently have access to this content.