This paper considers a thermo-viscoplastic model of the steady state orthogonal machining process by using a three-field mixed finite element method based on the Hu-Washizu variational principle. Assuming a trial chip geometry, work and tool material properties, and cutting conditions (cutting speed, feed rate and rake angle), detailed information on the state of the stresses, deformation, and temperature distributions in the workpiece and tool are obtained. This approach is shown to satisfy the nontrivial stress boundary condition better than the machining model that is based on the compatible displacement finite element method. The heat generated due to the plastic deformation, to the friction, and the heat conducted into the tool are calculated. The effects of the heat conduction and friction on the temperature field are studied. The isothermal machining case is also considered to study the thermal effect on the machining process. Numerical results are given for the aluminum 6061 alloy and pure titanium under several cutting conditions.

1.
Ernst
H.
, and
Merchant
M. E.
,
1941
, “
Chip Formation, Friction, and High Quality Machined Surfaces
,”
Trans. ASM
, Vol.
29
, pp.
299
378
.
2.
Oxley
P. L. B.
,
1962
, “
Shear Angle Solutions in Orthogonal Machining
,”
Int. J. Mach. Tool Des. Res.
, Vol.
2
, pp.
219ndash;229
219ndash;229
.
3.
Lee
E. H.
, and
Shaffer
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME Journal of Applied Mechanics
, Vol.
13
, pp.
405
413
.
4.
Kudo
H.
,
1965
, “
Some New Slip-Line Solutions for Two-DimensionalSteady-State Machining
,”
Int. J. Mech. Sci.
, Vol.
7
, pp.
43
55
.
5.
Tay
A. O.
,
Stevenson
M. G.
, and
de Vahl Davis
G.
,
1974
, “
Using the Finite Element Method to Determine Temperature Distribution in Orthogonal Machining
,”
Proc. Inst. Mech. Engrs.
, Vol.
188
, pp.
627
638
.
6.
Usui, E., and Shirakashi, T., 1982, “Mechanics of Machining—From ‘Descriptive’ to ‘Predictive’ Theory,” On the Art of Cutting Metals—75 Years Later, ASME PED-Vol. 7, pp. 13–35, ASME, New York.
7.
Iwata
K.
,
Sakada
K. O.
, and
Terasaka
Y.
,
1984
, “
Process Modeling of Orthogonal Cutting by Rigid Plastic Finite Element Method
,”
J. Eng. Mat. Tech.
, Vol.
106
, pp.
132
138
.
8.
Komvopoulos
K.
, and
Erpenbeck
S. A.
,
1991
, “
Finite Element Modeling of Orthogonal Metal Cutting
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
113
, pp.
253
267
.
9.
Jain, P., 1985, “Finite Element Analysis of Machining,” M.S. Thesis, University of Kentucky, Lexington, Kentucky.
10.
Eldridge, K., Dillon, Jr., O. W., and Lu, W. Y., 1991, “Thermo-Viscoplastic Finite Element Modeling of Machining under Various Cutting Conditions,” Trans. NAMRI/SME, pp. 162–169.
11.
Strenkowski
J. S.
, and
Carroll
J. T.
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
107
, pp.
349
354
.
12.
Strenkowski
J. S.
, and
Moon
K.-J.
,
1990
, “
Finite Element Predictions of Chip Geometry and Tool/Workpiece Temperature Distributions in Orthogonal Metal Cutting
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
112
, pp.
313
318
.
13.
Howerton, D. H., Strenkowski, J. S., and Bailey, J. A., 1989, “Prediction of Built Up Edge Formation in Orthogonal Cutting of Aluminum,” Trans. NAMRI/SME, pp. 95–102.
14.
Stephenson
D. A.
, and
Wu
S. M.
,
1988
, “
Computer Models for the Mechanics of Three-Dimensional Cutting Processes—Part 1: Theory and Numerical Method
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
110
, pp.
32
37
.
15.
Pian
T. H. H.
, and
Tong
Pin
,
1969
, “
Basis of Finite Element Methods for Solid Continua
,”
Int. J. Num. Meth. Eng.
, Vol.
1
, pp.
3
28
.
16.
Belytschko
T.
,
Ong
J. S.-J.
,
Liu
W. K.
, and
Kennedy
J. M.
,
1984
, “
Hourglass Control in Linear and Nonlinear Problems
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
43
, pp.
251
276
.
17.
Belytschko
T.
, and
Bachrach
W. E.
,
1986
, “
Efficient Implementation of Quadrilaterals with Course-Mesh Accuracy
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
54
, pp.
279
301
.
18.
Jetteur
Ph.
, and
Cescotto
S.
,
1991
, “
A Mixed Finite Element for the Analysis of Large Inelastic Strains
,”
Int. J. Num. Meth. Eng.
, Vol.
31
, pp.
229
239
.
19.
Usui
E.
,
Shirakashi
T.
, and
Kitagawa
T.
,
1978
, “
Analytical Prediction of Three Dimensional Cutting Process—Part 3: Cutting Temperature and Crater Wear of Carbide Tool
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
110
, pp.
236
243
.
20.
Trent, E. M., 1984, Metal Cutting, Second Edition, Butterworths, London.
21.
Oxley, P. L. B., 1989, The Mechanics of Machining: An Analytical Approach to Assessing Machinability, John Wiley & Sons, New York.
22.
Zienkiewicz
O. C.
, and
Godbole
P. N.
,
1974
, “
Flow of Plastic and Visco-Plastic Solids with Special Reference to Extrusion and Forming Processes
,”
Int. J. Num. Meth. Eng.
, Vol.
8
, pp.
3
16
.
23.
Lee
C. H.
, and
Kobayashi
S.
,
1973
, “
New Solution to Rigid Plastic Deformation Problems Using a Matrix Method
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
95
, pp.
865
873
.
24.
Osakada
K.
,
Nakano
J.
, and
Mori
K.
,
1982
, “
Finite Element Method for Rigid Plastic Analysis of Metal Forming—Formulation for Finite Deformation
,”
Int. J. Mech. Sci.
, Vol.
24
, pp.
459
468
.
25.
Sellars
C. M.
, and
McG. Tegart
W. J.
,
1972
, “
Hot Workability
,”
Int. Met. Rev.
, Vol.
17
, pp.
1
24
.
26.
Bailey
J. A.
,
Haas
S. L.
, and
Shah
M. K.
,
1972
, “
Effect of Strain-Rate and Temperature on the Resistance to Torsional Deformation of Several Aluminum Alloys
,”
Int. J. Mech. Sci.
, Vol.
14
, pp.
735
754
.
27.
Jonas
J. J.
, and
Immarigeon
J-P.
,
1969
, “
The Hot Compression of Titanium, Uranium and Zirconium Considered as a Thermally-Activated Process
,”
Z. Metallkunde
, Vol.
60
, pp.
227
231
.
28.
Zienkiewicz
O. C.
,
Jain
P. C.
, and
Onate
E.
,
1978
, “
Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions
,”
Int. J. Solids Struct.
, Vol.
14
, pp.
15
38
.
29.
Washizu, K., 1968, Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford.
30.
Cook
R. D.
,
1975
, “
Avoidance of Parasitic Shear in Plane Element
,”
J. Struct. Div. ASCE
, Vol.
101
, pp.
1239
1253
.
31.
Zienkiewicz, O. C., 1977, The Finite Element Method, Third Edition, McGraw-Hill, London.
32.
Metals Handbook Ninth Edition, 1979, Vols. 2 and 3, ASM, Metal Parks, OH.
33.
Zorev, N. N., 1963, “Interrelationship between Shear Processes Occurring along Tool Face and on Shear Plane in Metal Cutting,” Proc. Int. Prod. Eng. Res. Conf., ASME, New York, pp. 42–49.
34.
Stevenson
M. G.
,
Wright
P. K.
, and
Chow
J. G.
,
1983
, “
Further Developments in Applying the Finite Element Method to the Calculation of Temperature Distributions in Machining and Comparisons with Experiment
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
105
, pp.
149
154
.
35.
Iwata
Z.
,
Aihara
A.
, and
Kurasaka
T.
,
1971
, “
The Adhesion of Carbide and Carbon Steels at High Pressures and Temperatures
,”
Wear
, Vol.
46
, pp.
153
163
.
36.
Li, Xiaoping, 1991, “A Computer-Based Numerical Study of the Role of Cooling in Machining,” Ph.D. Dissertation, University of New South Wales, Kensington, Australia.
This content is only available via PDF.
You do not currently have access to this content.