Electromagnetic riveting, used in some aerospace assembly processes, involves rapid deformation, leading to the finished rivet configuration. Analysis of this process is described for the case of an aluminum rivet joining typical aluminum structural elements. The analysis is based on a finite element method that includes the effects of heating, due to rapid plastic deformation of the material, on the material properties. Useful details of material deformation and thermal history and the final rivet and structure configuration and states of stress and strain are obtained. These results have significant implications in the design, implementation, and improvement of practical fastening processes in the aerospace industry.

1.
Marusich
T. D.
, and
Ortiz
M.
, “
Modelling and Simulation of High-Speed Machining
,”
Int. J. Numer. Meth. Engr.
, Vol.
38
,
1995
, pp.
675
3694
.
2.
Camacho
G. T.
, and
Ortiz
M.
, “
Computational Modelling of Impact Damage and Penetration f Brittle and Ductile Solids
,”
Int. J. Solids Structures
, Vol.
33
,
1996
, pp.
20
22
.
3.
Camacho, G. T., and Ortiz, M., “Adaptive Lagrangian Modelling of Ballistic Penetration of Metallic Targets,” Comp. Meth. Appl. Mech. Engr., 1996, in press.
4.
Hughes, T. J. R., “The Finite Element Method,” Prentice Hall, 1987.
5.
Hughes
T. J. R.
, and
Belytschko
T.
, “
A Pre´cis of Developments in Computational Methods for Transient Analysis
,”
ASME Journal of Applied Mechanics
, Vol.
50
,
1983
, pp.
1033
1041
.
6.
Belytschko, T., “An Overview of Semidiscretization and Time Integration Procedures,” T. Belytschko and T. J. R. Hughes, eds., Computational Methods for Transient Analysis, North-Holland, 1983, pp. 1–65.
7.
Hughes, T. J. R., “Analysis of Transient Algorithms with Particular Reference to Stability Behavior,” T. Belytschko, and T. J. R. Hughes eds., Computational Methods for Transient Analysis, North-Holland, 1983, pp. 67–155.
8.
Mathur
K. K.
,
Needleman
A.
, and
Tvergaard
V.
, “
Dynamic 3D Analysis of the Charpy V-Notch Test
,”
Modelling Simul. Mater. Sci. Eng.
, Vol.
1
,
1993
, pp.
467
484
.
9.
Taylor, L., and Flanagan, D., “PRONTO 2D: A Two-Dimensional Transient Solid Dynamics Program,” Sandia National Laboratories, SAND86-0594, 1987.
10.
Hodowany, J., Ravichandran, G., and Rosakis, A. E., work in progress.
11.
Park, K. C., and Felippa, C. A., “Partitioned Analysis of Coupled Systems,” T. Belytschko and T. J. R. Hughes, eds., Computational Methods for Transient Analysis, North-Holland, 1983, pp. 157–219.
12.
Lemonds
J.
, and
Needleman
A.
, “
Finite Element Analysis of Shear Localization in Rate and Temperature Dependent Solids
,”
Mechanics of Materials
, Vol.
5
,
1986
, pp.
339
361
.
13.
Cuitin˜o
A. M.
, and
Ortiz
M.
, “
A Material-Independent Method for Extending Stress Update Algorithms from Small-Strain Plasticity to Finite Plasticity with Multiplicative Kinematics
,”
Engineering Computations
, Vol.
9
,
1992
, pp.
437
451
.
14.
Klopp
R. W.
,
Clifton
R. J.
, and
Shawki
T. G.
, “
Pressure-Shear Impact and the Dynamic Viscoplastic Response of Metals
,”
Mechanics of Materials
, Vol.
4
,
1985
, pp.
375
385
.
15.
Clifton, R. J., and Klopp, R. W., “Pressure-Shear Plate Impact Testing,” Metals Handbook Ninth Edition, Vol. 8, 1985, pp. 230–239.
16.
Tong
W.
,
Clifton
R. J.
, and
Huang
S.
, “
Pressure-Shear Impact Investigation of Strain rate History Effects in Oxygen-Free High-Conductivity Copper
,”
J. Mech. Phys. Solids
, Vol.
40
,
1992
, pp.
1251
1294
.
17.
Zhou, M., Clifton, R. J., and Needleman, A., “Shear Band Formation in a W-Ni-Fe Alloy under Plate Impact,” Tungsten & Tungsten Alloys—1992, Metal Powder Industries Federation, Princeton, N.J.
18.
Johnson
G. R.
, and
Cook
W. H.
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Engng Fract. Mech.
, Vol.
21
,
1985
, pp.
31
48
.
19.
Baehmann
P. L.
,
Wittchen
S. L.
,
Shephard
M. S.
,
Grice
K. R.
, and
Yerry
M. A.
, “
Robust, Geometrically Based, Automatic Two-Dimensional Mesh Generation
,”
Int. J. Num. Meth. Engr.
, Vol.
24
,
1987
, pp.
1043
1078
.
20.
Jin
H.
, and
Wiberg
N. E.
, “
Two-Dimensional Mesh Generation, Adaptive Remeshing and Refinement
,”
Int. J. Num. Meth. Engr.
, Vol.
29
,
1990
, pp.
1501
1526
.
21.
Peraire
J.
,
Vahdati
M.
,
Morgan
K.
, and
Zienkiewicz
O. C.
, “
Adaptive Remeshing for Compressible Flow Computations
,”
J. Comp. Phys.
, Vol.
72
,
1987
, pp.
449
466
.
22.
Ortiz
M.
, and
Quigley
J. J.
, “
Adaptive Mesh Refinement in Strain Localization Problems
,”
Comp. Meth. in Appl. Mech. Engng.
, Vol.
90
,
1991
, pp.
781
804
.
23.
Lohner
R.
, “
Some Useful Data Structures for the Generation of Unstructured Grids
,”
Comm. Appl. Numer. Meth.
, Vol.
4
,
1988
, pp.
123
135
.
This content is only available via PDF.
You do not currently have access to this content.