A finite element model was developed to simulate chip formation in the edge trimming of unidirectional Fiber Reinforced Plastics (FRPs) with orthogonal cutting tools. Fiber orientations (θ) within the range of 0 deg⩽θ⩽90 deg were considered and the cutting tool was modeled as both a rigid and deformable body in independent simulations. The principal and thrust force history resulting from numerical simulations for orthogonal cutting were compared to those obtained from edge trimming of unidirectional Graphite/Epoxy (Gr/Ep) using polycrystalline diamond tools. It was found that principal cutting forces obtained from the finite element model with both rigid and deformable body tools compared well with experimental results. Although the cutting forces increased with increasing fiber orientation, the tool rake angle had limited influence on cutting forces for all orientations other than θ=0 deg and 90 deg. However, the tool geometry did affect the degree of subsurface damage resulting from interlaminar shear failure as well as the cutting tool stress distribution. The finite element model for chip formation provides a means for optimizing tool geometry over the total range in fiber orientations in terms of the cutting forces, degree of subsurface trimming damage, and the cutting tool stresses.

1.
Konig
,
W.
,
Wulf
,
Ch.
,
Graß
,
P.
, and
Willerscheid
,
H.
,
1985
, “
Machining of Fiber Reinforced Plastics
,”
CIRP Ann.
,
34
(
2
), pp.
537
547
.
2.
Abrate
,
S.
, and
Walton
,
D. A.
,
1992
, “
Machining of Composite Materials. Part I: Traditional Methods
,”
Compos. Manuf.
,
3
(
2
), pp.
75
83
.
3.
Komanduri
,
R.
,
1993
, “
Machining of Fiber-Reinforced Composites
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
115
, pp.
58
64
.
4.
Everstine
,
G. C.
, and
Rogers
,
T. G.
,
1971
, “
A Theory of Machining of Fiber-Reinforced Materials
,”
J. Compos. Mater.
,
5
, pp.
94
106
.
5.
Takeyama
,
H.
, and
Iijima
,
N.
,
1988
, “
Machinability of Glass Fiber Reinforced Plastics and Applications of Ultrasonic Machining
,”
CIRP Ann.
,
37
(
1
), pp.
93
96
.
6.
Bhatnagar
,
N.
,
Ramakrishnan
,
N.
,
Naik
,
N. K.
, and
Komanduri
,
R.
,
1995
, “
On the Machining of Fiber Reinforced Plastics (FRP) Composite Laminates
,”
Int. J. Mach. Tools Manuf.
,
35
(
5
), pp.
701
716
.
7.
Pwu
,
H. Y.
, and
Hocheng
,
H.
,
1998
, “
Chip Formation Model of Cutting Fiber-Reinforced Plastics Perpendicular to Fiber Axis
,”
ASME J. Manuf. Sci. Eng.
,
120
(
1
), pp.
192
196
.
8.
Koplev
,
A.
,
1983
, “
The Cutting Process, Chips and Cutting Forces in Machining of CFRP
,”
Composites
,
14
(
4
), pp.
1597
1605
.
9.
Sakuma
,
K.
, and
Seto
,
M.
,
1983
, “
Tool Wear in Cutting Glass-Fiber-Reinforced Plastics
,”
Bull. JSME
,
26
(
218
), pp.
1420
1427
.
10.
Sakuma
,
K.
, and
Seto
,
M.
,
1985
, “
Tool Wear in Cutting of Carbon Fiber Reinforced Plastics
,”
Bull. JSME
,
26
(
245
), pp.
2781
2788
.
11.
Spur
,
G.
, and
Wunsch
,
U. E.
,
1988
, “
Turning of Fiber-Reinforced Plastics
,”
Manufacturing Review
,
1
(
2
), pp.
124
129
.
12.
Hocheng
,
H.
,
Pwu
,
H. Y.
, and
Huang
,
Y.
,
1993
, “
Preliminary Study on Milling of Unidirectional Carbon Fibre-Reinforced Plastics
,”
Compos. Manuf.
,
4
(
2
), pp.
103
108
.
13.
Wang
,
D. H.
,
Ramulu
,
M.
, and
Wern
,
C. W.
,
1992
, “
Orthogonal Cutting Characteristics of Graphite/Epoxy Composite Material
,”
Transactions of NAMRI/SME
, Vol.
XX
, pp.
159
165
.
14.
Ramulu
,
M.
,
Faridnia
,
M.
,
Garbini
,
J. L.
, and
Jorgensen
,
J. E.
,
1991
, “
Machining of Graphite/Epoxy Composite Materials with Polycrystalline Diamond (PCD) Tools
,”
ASME J. Eng. Ind.
,
113
(
4
), pp.
430
436
.
15.
Ramulu, M., 1999, “Cutting Edge Wear of PolyCrystalline Diamond Inserts in Machining of Fibrous Composite Material,” Machining of Ceramics and Composites, S. Jahanmir, M. Ramulu, and P. Koshy, eds., Marcel Dekker, pp. 357–409.
16.
Chen
,
Z. G.
, and
Black
,
J. T.
,
1994
, “
FEM Modeling in Metal Cutting
,”
Manufacturing Review
,
7
(
2
), pp.
120
133
.
17.
Iwata
,
K.
,
Osakada
,
K.
, and
Terasaka
,
Y.
,
1984
, “
Process Modeling of Orthogonal Cutting by the Rigid Plastic Finite Element Method
,”
ASME J. Eng. Mater. Technol.
,
106
(
2
), pp.
132
137
.
18.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy-Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.
19.
Obikawa
,
T.
,
Sasahara
,
H.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1997
, “
Application of Computational Machining Method to Discontinuous Chip Formation
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4
), pp.
667
674
.
20.
Obikawa, T., Shirakashi, T., and Usui, E., 1995, “Finite Element Modeling of Machining of Glass Fiber Reinforced Plastics,” Proceedings of the 31st International MATADOR Conference, April 20–21, MacMillan Press, London, p. 223.
21.
Arola
,
D.
, and
Ramulu
,
M.
,
1997
, “
Orthogonal Cutting of Fiber-Reinforced Composites: A Finite Element Analysis
,”
Int. J. Mech. Sci.
,
39
(
5
), pp.
597
613
.
22.
Ramesh
,
M. V.
,
Seetharamu
,
K. N.
,
Ganesan
,
N.
, and
Sivakumar
,
M. S.
,
1998
, “
Analysis of Machining of FRPs using FEM
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
), pp.
1531
1549
.
23.
Wang
,
D. H.
,
Ramulu
,
M.
, and
Arola
,
D.
,
1995
, “
Orthogonal Cutting Mechanism of Graphite/Epoxy Composite. Part I: Unidirectional Laminate
,”
Int. J. Mach. Tools Manuf.
,
35
(
12
), pp.
1623
1638
.
24.
Wang
,
D. H.
,
Ramulu
,
M.
, and
Arola
,
D.
,
1995
, “
Orthogonal Cutting Mechanism of Graphite/Epoxy Composite. Part II: Multi-Directional Laminate
,”
Int. J. Mach. Tools Manuf.
,
35
(
12
), pp.
1639
1648
.
25.
Arola
,
D.
,
Ramulu
,
M.
, and
Wang
,
D. H.
,
1996
, “
Chip Formation in Orthogonal Trimming of Graphite/Epoxy Composite
,”
Composites
,
27A
(
2
), pp.
121
133
.
26.
Sung
,
N. H.
, and
Suh
,
N. P.
,
1979
, “
Effect of Fiber Orientation of Friction and Wear of Fiber Reinforced Polymeric Composites
,”
Wear
,
53
(
1
), pp.
129
141
.
27.
Hull, D., 1981, An Introduction to Composite Materials, University Press, Cambridge, pp. 154–162.
You do not currently have access to this content.