In this article, weld fracture criteria based upon low strain rate (i.e., ε̇103-102s1) tensile-shear tests of spot welds in dual-phase (DP) steels DP600, DP780, and DP980 are developed. Three empirical equations are inferred from least-squares root-fitting analyses of tensile-shear testing data. Building upon existing results in the literature, the first equation relates the tensile-shear force to the weld diameter. The second and third equations relate, respectively, a critical weld diameter and a critical tensile-shear force for interfacial fracture to the sheet thickness and hardness extrema in the heat-affected zone. These idealized equations can serve as the basis for further development of fracture criteria resembling material flow laws that account for higher strain rates and more complicated deformation paths. The effect of spot-weld placement in specific patterns or arrays on deformation and fracture behavior was also investigated to explore underlying effects from deformation field interactions between adjacent spot welds.

1.
Zhang
,
S.
, 1997, “
Stress Intensities at Spot Welds
,”
Int. J. Fract.
0376-9429,
88
, pp.
167
185
.
2.
Barkey
,
M. E.
, and
Kang
,
H.
, 1999, “
Testing of Spot Welded Coupons in Combined Tension and Shear
,”
Exp. Tech.
0732-8818,
23
, pp.
20
22
.
3.
Wung
,
P.
, 2001, “
A Force-Based Failure Criterion for Spot-Weld Design
,”
Exp. Mech.
0014-4851,
41
, pp.
107
113
.
4.
Chao
,
Y. J.
, 2003, “
Ultimate Strength and Failure Mechanism of Resistance Spot Weld Subjected to Tensile, Shear, or Combined Tensile/Shear Loads
,”
ASME J. Eng. Mater. Technol.
0094-4289,
125
, pp.
125
132
.
5.
Chao
,
Y. J.
, 2003, “
Failure Mode of Spot Welds
,”
Sci. Technol. Weld. Joining
1362-1718,
8
, pp.
133
137
.
6.
Lin
,
S.-H.
,
Pan
,
J.
,
Wu
,
S.
, and
Tyan
,
T.
, 2003, “
Failure of Spot Weld Specimens under Impact Opening and Shear Loading Conditions
,”
Exp. Mech.
0014-4851,
44
, pp.
147
15
.
7.
Lin
,
S. H.
,
Pan
,
J.
,
Wu
,
S. R.
,
Tyan
,
T.
, and
Wung
,
P.
, 2001, “
Failure Loads of Spot-welds Under Combined Opening and Shear Static Loading Conditions
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
19
39
.
8.
Cavalli
,
M. N.
,
Thouless
,
M. D.
, and
Yang
,
Q. D.
, 2005, “
Cohesive-Zone Modeling of the Deformation and Fracture of Spot-Welded Joints
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
28
(
10
), pp.
861
874
.
9.
Zhou
,
M.
,
Zhang
,
H.
, and
Hu
,
S. J.
, 2003, “
Relationships Between Quality and Attributes of Spot Welds
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
82
, pp.
72s
77s
.
10.
Heuschkel
,
J.
, 1952, “
The Expression of Spot Weld Properties
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
31
, pp.
931s
943s
.
11.
Sawhill
,
J. M.
, and
Baker
,
J. C.
, 1980, “
Spot Weldability of High-Strength Sheet Steels
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
59
, No.
1
, pp.
19ss
30s
.
12.
ANSI/AWS/SAE/D8.9-97, Recommended Practices for Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials,
American Welding Society
(1997).
13.
Marya
,
M.
, and
Gayden
,
X.
, 2005, “
Development of Requirements for Resistance Spot Welding of Dual-Phase Steels (DP600)—Part I: The Causes of Interfacial Fractures
,”
Weld J.
,
84
(
11
), pp.
172s
182s
.
14.
Marya
,
M.
, and
Gayden
,
X.
, 2005, “
Development of Requirements for Resistance Spot Welding of Dual-Phase Steels (DP600)—Part II: Statistical Analyses
,”
Weld J.
,
84
(
12
), pp.
197s
204s
.
15.
Combescure
,
A.
,
Delcroix
,
F.
,
Caplain
,
L.
,
Espanol
,
S.
, and
Eliot
,
P.
, 2003, “
A Finite Element to Simulate the Failure of Weld Points on Impact
,”
Int. J. Impact Eng.
0734-743X,
28
, pp.
783
802
.
16.
Zhou
,
M.
,
Hu
,
S. J.
, and
Zhang
,
H.
, 1999, “
Critical Specimen Sizes for Tensile-Shear Testing of Steel Sheets
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
78
, pp.
305s
312s
.
17.
ULSAB-AVC (UltraLight Steel Autobody—Advanced Vehicle Concepts) Consortium, Technical Transfer Dispatch #6 (Body Structure Materials),
American Iron and Steel Institute
, Southfield, MI. May 26 (2001).
18.
Krauss
,
G.
, (1990),
Steels—Heat Treatment and Processing Principles
,
ASM International
,
Materials Park, OH
, pp.
247
279
.
19.
Ghosh
,
P. K.
,
Gupta
,
P. C.
,
Ramavtar
,
P.
, and
Jha
,
B. K.
, 1991, “
Weldability of Intercritical Annealed Dual-Phase Steel with the Resistance Spot Welding Process
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
70
, pp.
7s
14s
.
21.
Tong
,
W.
,
Tao
,
H.
,
Jiang
,
X.
,
Zhang
,
N.
,
Marya
,
M.
,
Hector
,
L. G.
, Jr.
, and
Gayden
,
X. Q.
, 2005, “
Deformation and Fracture of Miniature Tensile Bars with Resistance-Spot-Weld Microstructures
,”
Metall. Mater. Trans. A
1073-5623,
36
, pp.
2651
2669
.
22.
Barlat
,
F.
,
Lege
,
D. J.
, and
Brem
,
J. C.
, 1991, “
A Six-Component Yield Function for Anisotropic Materials
,”
Int. J. Plast.
0749-6419,
7
, pp.
693
712
.
23.
Barlat
,
F.
, and
Chung
,
K.
, 1993, “
Anisotropic Potentials for Plastically Deforming Metals
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
1
, pp.
403
416
.
24.
General Motors Corporation, 1998,
GM4488M Automotive Resistance Spot Welds
,
General Motors
,
Detroit, MI
.
25.
Keller
,
F.
, and
Smith
,
D. W.
, 1944, “
Correlation of the Strength and Structure of Spot Welds in Aluminum Alloys
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
23
, pp.
23s
26s
.
26.
McMaster
,
R. C.
, and
Lindrall
,
F. C.
, 1946, “
The Interpretation of Radiographs of Spot Welds in Alclad 24S-T and 75S-T Aluminum Alloys
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
25
, pp.
707s
723s
.
27.
Devilliers
,
L.
,
Kaplan
,
D.
, and
Saint-Martin
,
P. S.
, 1986, “
Resistance-Spot Weldability of Hot-Rolled High-Yield Strength Steel
,”
Soudage et Techniques Connexes
,
40
, pp.
387
395
.
28.
ASM Handbook, Volume 06, Welding Brazing and Soldering
1993 (
American Society for Materials
,
Materials Park, OH
.
29.
Saito
,
T.
, and
Ichiyama
,
Y.
, 1996, “
Weld Defects and Evaluation Quality—Welding Phenomena and Process Control in Flash Welding of Steel Sheets
,”
Welding International
,
10
, pp.
117
123
.
You do not currently have access to this content.