This paper presents a time-domain dynamic model, which simulates cylindrical plunge grinding processes under general grinding conditions. The model focuses on the prediction of grinding chatter boundaries and growth rates. Critical issues are considered in the model including: the distributed nonlinear force along the contact length, the geometrical interaction between the wheel and workpiece based on their surface profiles, the structure dynamics with multiple degrees of freedom for both the wheel and workpiece, the response delay due to spindle nonlinearities and other effects, and the effect of the motion perpendicular to the normal direction. A simulation program has been developed using the model to predict regenerative forces, dynamic responses, surface profiles, stability regions, and chatter growth rates. The model is validated using existing numerical and experimental results.

1.
Malkin
,
S.
, 1989,
Grinding Technology: Theory and Application of Machining with Abrasives
,
Ellis Horwood, Chichester and John Wiley
, New York.
2.
Inasaki
,
I.
,
Karpuschewski
,
B.
, and
Lee
,
H.-S.
, 2001, “
Grinding Chatter—Origin and Suppression
,”
CIRP Ann.
0007-8506,
50
(
2
), pp.
515
534
.
3.
Tlusty
,
J.
, and
Ismail
,
F.
, 1981, “
Basic Nonlinearity in Machining Chatter
,”
CIRP Ann.
0007-8506,
30
(
1
), pp.
21
25
.
4.
Shin
,
Y. C.
, and
Waters
,
A. J.
, 1994, “
Face Milling Process Modeling with Structural Nonlinearity
,”
Trans. North American Manufacturing Research Institution of SME
,
22
, pp.
157
163
.
5.
Jensen
,
S. A.
, and
Shin
,
Y. C.
, 1999, “
Stability Analysis in Facemilling Operation: Part 1—Theory for Stability Lobe Prediction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
21
(
4
), pp.
600
605
.
6.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability Conditions for Multi-Degree of Systems in Milling. Part I: Modelling
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
22
30
.
7.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability Conditions for Multi-Degree of Systems in Milling. Part II: Applications
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
31
36
.
8.
Li
,
H.
, and
Shin
,
Y. C.
, 2006, “
A Comprehensive Dynamic End Milling Simulation Model
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
86
95
.
9.
Endres
,
W. J.
,
Sutherland
,
J. W.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 1990, “
A Dynamic Model of the Cutting Force System in the Turning Process
,” in
Proceedings of Monitoring and Control for Manufacturing Processes
,
ASME PED
,
44
, pp.
193
212
.
10.
Rao
,
B.
, and
Shin
,
Y. C.
, 1999, “
A Comprehensive Dynamic Cutting Force Model for Chatter Prediction in Turning
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
10
), pp.
1631
1654
.
11.
Clancy
,
B. E.
, and
Shin
,
Y. C.
, 2002, “
A Comprehensive Chatter Prediction Model for Face Turning Operation Including the Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
9
), pp.
1035
1044
.
12.
Zhang
,
G. M.
, and
Kapoor
,
S. G.
, 1987, “
Dynamic Modeling and Analysis of the Boring Machining System
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
109
, pp.
219
226
.
13.
Jayaram
,
S.
, and
Iyer
,
M.
, 2000, “
An Analytical Model for Prediction of Chatter Stability in Boring
,”
Trans. North American Manufacturing Research Institution of SME
,
28
, pp.
203
208
.
14.
Hahn
,
R. S.
, 1954, “
On the Theory of Regenerative Chatter in Precision-Grinding Operations
,”
Trans. ASME
0097-6822,
76
(
1
), pp.
593
597
.
15.
Snoeys
,
R.
, and
Brown
,
D.
, 1969, “
Dominating Parameters in Grinding Wheel and Workpiece Regenerative Chatter
,” in
Proceedings of the 10th International Machine Tool Design and Research Conference
, Manchester, pp.
325
348
.
16.
Bartalucci
,
B.
, and
Lisini
,
G. G.
, 1969, “
Grinding Process Instability
,”
ASME J. Eng. Ind.
0022-0817,
91
(
3
), pp.
597
606
.
17.
Inasaki
,
I.
, and
Yonetsu
,
S.
, 1977, “
Regenerative Chatter in Grinding
,” in
Proceedings of the 18th International Machine Tool Design and Research Conference
, pp.
423
429
.
18.
Srinivasan
,
K.
, 1982, “
Application of the Regeneration Spectrum Method to Wheel Regenerative Chatter in Grinding
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
46
54
.
19.
Matsubara
,
T.
,
Mizumoto
,
H.
, and
Yamamoto
,
H.
, 1987, “
Experimental Analysis of Work Regenerative Chatter in Plunge Grinding
,”
Bull. Jpn. Soc. Precis. Eng.
0582-4206,
21
(
1
), pp.
33
37
.
20.
Thompson
,
R. A.
, 1977, “
On the Doubly Regenerative Stability of a Grinder: The Combined Effect of Wheel and Workpiece Speed
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
237
241
.
21.
Thompson
,
R. A.
, 1986, “
On the Doubly Regenerative Stability of a Grinder: The Mathematical Analysis of Chatter Growth
,”
ASME J. Eng. Ind.
0022-0817,
108
, pp.
83
92
.
22.
Thompson
,
R. A.
, 1986, “
On the Doubly Regenerative Stability of a Grinder: The Theory of Chatter Growth
,”
ASME J. Eng. Ind.
0022-0817,
108
, pp.
75
82
.
23.
Thompson
,
R. A.
, 1992, “
On the Doubly Regenerative Stability of a Grinder: the Effect of Contact Stiffness and Wave Filtering
,”
ASME J. Eng. Ind.
0022-0817,
114
, pp.
53
60
.
24.
Liao
,
Y. S.
, and
Shiang
,
L. C.
, 1991, “
Computer Simulation of Self-Excited and Forced Vibrations in the External Cylindrical Plunge Grinding Process
,”
ASME J. Eng. Ind.
0022-0817,
113
, pp.
297
304
.
25.
Biera
,
J.
,
Vinolas
,
J.
, and
Nieto
,
F. J.
, 1997, “
Time Domain Dynamic Modeling of the External Plunge Grinding Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
, pp.
1555
1572
.
26.
Martellotti
,
M. E.
, 1941, “
An Analysis of the Milling Process
,”
Trans. ASME
0097-6822,
63
, pp.
667
700
.
27.
Badge
,
J. A.
, and
Torrance
,
A. A.
, 2000, “
A Comparison of Two Models to Predict Grinding Forces from Wheel Surface Topography
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
1099
1120
.
28.
Snoeys
,
R.
,
Peters
,
J.
, and
Decneut
,
A.
, 1974, “
The Significance of Chip Thickness in Grinding
,”
CIRP Ann.
0007-8506,
23
(
2
), pp.
227
237
.
29.
Younis
,
M.
,
Sadek
,
M. M.
, and
El-Wardani
,
T.
, 1987, “
A New Approach to Development of a Grinding Force Model
,”
ASME J. Eng. Ind.
0022-0817,
109
, pp.
306
313
.
30.
Choi
,
T.
, and
Shin
,
Y. C.
, 2005, “
Generalized Intelligent Grinding Advisory System
,” in
International Journal of Production Research
(submitted).
31.
Malkin
,
S.
, and
Cook
,
N. H.
, 1971, “
The Wear of Grinding Wheels, Part 1—Attritious Wear
,”
ASME J. Eng. Ind.
0022-0817,
93
(
4
), pp.
1120
1128
.
32.
Weck
,
M.
, and
Alldieck
,
J.
, 1989, “
The Originating Mechanisms of Wheel Regenerative Grinding Vibration
,”
CIRP Ann.
0007-8506,
38
(
1
), pp.
381
384
.
33.
Paz
,
M.
, 1997,
Structural Dynamics: Theory and Computation
, 4th ed.,
Chapman and Hall
, New York.
34.
Brown
,
R. H.
,
Satio
,
K.
, and
Shaw
,
M. C.
, 1971, “
Local Elastic Deflections in Grinding
,”
CIRP Ann.
0007-8506,
19
(
1
), pp.
105
113
.
35.
Saini
,
D. P.
, 1990, “
Wheel Hardness and Local Elastic Deflections in Grinding
,”
Int. J. Mach. Tools Manuf.
0890-6955,
30
(
4
), pp.
637
649
.
36.
Hwang
,
T. W.
,
Evans
,
C. J.
, and
Malkin
,
S.
, 1999, “
Size Effect for Specific Energy in Grinding Silicon Nitride
,”
Wear
0043-1648,
225–229
, pp.
862
867
.
You do not currently have access to this content.