In micromachining, the uncut chip thickness is comparable or even less than the tool edge radius and as a result a chip will not be generated if the uncut chip thickness is less than a critical value, viz., the minimum chip thickness. The minimum chip thickness effect significantly affects machining process performance in terms of cutting forces, tool wear, surface integrity, process stability, etc. In this paper, an analytical model has been developed to predict the minimum chip thickness values, which are critical for the process model development and process planning and optimization. The model accounts for the effects of thermal softening and strain hardening on the minimum chip thickness. The influence of cutting velocity and tool edge radius on the minimum chip thickness has been taken into account. The model has been experimentally validated with 1040 steel and Al6082-T6 over a range of cutting velocities and tool edge radii. The developed model has then been applied to investigate the effects of cutting velocity and edge radius on the normalized minimum chip thickness for various carbon steels with different carbon contents and Al6082-T6.

1.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
695
705
.
2.
Lee
,
K.
, and
Dornfeld
,
D. A.
, 2002, “
An Experimental Study on Burr Formation in Micro Milling Aluminum and Copper
,”
Trans. NAMRI/SME
1047-3025,
30
, pp.
255
262
.
3.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
685
694
.
4.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschle
,
H.
, 2001, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
0007-8506,
50
, pp.
61
64
.
5.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
, 1996, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
0924-0136,
62
, pp.
327
330
.
6.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
,
Ohmori
,
G.
,
Uchikoshi
,
J.
, and
Yoshinaga
,
H.
, 1993, “
Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation
,”
CIRP Ann.
0007-8506,
42
, pp.
91
94
.
7.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Bammann
,
D. J.
, 2001,
Microstructure-Level Modeling of Ductile Iron Machining
,
ASME
, New York, pp.
125
134
.
8.
Kragelsky
,
I. V.
,
Dobychin
,
M. N.
, and
Kombalov
,
V. S.
, 1977,
Friction and Wear—Calculation Methods
,
Pergamon Press
, New York.
9.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
Hague
, Netherlands, pp.
541
547
.
10.
Oxley
,
P. L. B.
, 1989,
Mechanics of Machining—An Analytical Approach to Assessing Machinability
,
Ellis Horwood Limited
, London.
11.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
, 2002, “
Material Behavior in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
0924-0136,
122
, pp.
322
330
.
12.
MacGregor
,
C. W.
, and
Fisher
,
J. C.
, 1946, “
A Velocity-Modified Temperature for the Plastic Flow of Metals
,”
ASME J. Appl. Mech.
0021-8936,
13
, pp.
211
218
.
13.
Ernst
,
H.
, and
Merchant
,
M. E.
, 1940,
Chip Formation, Friction, and High Quality Machined Surfaces
,
American Society for Testing Materials (ASTM)
, Philadelphia, PA, p.
40
.
14.
Liu
,
X.
,
Jun
,
M. B. G.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004,
Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-Endmilling
,
American Society of Mechanical Engineers
, Anaheim, CA.
15.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
Proceedings of Royal Society of NSW
,
76
, pp.
203
224
.
16.
Trigger
,
K. J.
, and
Chao
,
B. T.
, 1951, “
An Analytical Evaluation of Metal Cutting Temperature
,”
Trans. ASME
0097-6822,
73
, pp.
57
68
.
17.
Boothroyd
,
G.
, 1963, “
Temperatures in Orthogonal Metal Cutting
,”
Proc. Inst. Mech. Eng.
0020-3483,
177
(
29
), pp.
789
810
.
18.
Weiner
,
J. H.
, 1955, “
Shear Plane Temperature Distribution in Orthogonal Machining
,”
Trans. ASME
0097-6822,
77
, pp.
1331
1341
.
19.
Oyane
,
M.
,
Takashima
,
F.
,
Osakada
,
K.
, and
Tanaka
,
H.
, 1967, “
The Behavior of Some Steels Under Dynamic Compression
,”
Proceedings of the 10th Japan Congress on Testing Materials
, Kyoto, Japan, pp.
72
76
.
20.
Schimmel
,
R. J.
,
Endres
,
W. J.
, and
Stevenson
,
R.
, 2002, “
Application of an Internally Consistent Material Model to Determine the Effect of Tool Edge Geometry in Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
3
), pp.
536
543
.
You do not currently have access to this content.