Laser shock peening (LSP) is an innovative process which imparts compressive residual stresses in the processed surface of metallic parts to significantly improve fatigue life and fatigue strength of this part. In opposing dual sided LSP, the workpiece can be simultaneously irradiated or irradiated with different time lags to create different surface residual stress patterns by virtue of the interaction between the opposing shock waves. In this work, a finite element model, in which the hydrodynamic behavior of the material and the deviatoric behavior including work hardening and strain rate effects were considered, was applied to predict residual stress distributions in the processed surface induced under various conditions of the opposing dual sided microscale laser shock peening. Thus the shock waves from each surface will interact in different ways through the thickness resulting in more complex residual stress profiles. Additionally, when treating a thin section, opposing dual sided peening is expected to avoid harmful effects such as spalling and fracture because the pressures on the opposite surfaces of the target balance one another and prohibit excessive deformation of the target. In order to better understand the wave–wave interactions under different conditions, the residual stress profiles corresponding to various workpiece thicknesses and various irradiation times were evaluated.

1.
Clauer
,
A. H.
, and
Lahrman
,
D. F.
, 2001, “
Laser Shock Processing as a Surface Enhancement Process
,”
Key Eng. Mater.
1013-9826,
197
, pp.
121
144
.
2.
Fox
,
J. A.
, 1974, “
Effect of Water and Paint Coatings on Laser-Irradiated Targets
,”
Appl. Phys. Lett.
0003-6951,
24
(
10
), pp.
461
464
.
3.
Clauer
,
A. H.
, and
Holbrook
,
J. H.
, 1981, “
Effects of Laser Induced Shock Waves on Metals
,”
Shock Waves and High Strain Phenomena in Metals—Concepts and Applications
,
Plenum
,
New York
, pp.
675
702
.
4.
Peyre
,
P.
,
Sollier
,
A.
,
Chaieb
,
I.
,
Berthe
,
L.
,
Bartnicki
,
E.
,
Braham
,
C.
, and
Fabbro
,
R.
, 2003, “
FEM Simulation of Residual Stresses Induced by Laser Peening
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
23
, pp.
83
88
.
5.
Zhang
,
W.
, and
Yao
,
Y. L.
, 2000, “
Improvement of Laser Induced Residual Stress Distributions Via Shock Waves
,”
Proc. ICALEO’00, Laser Materials Processing
, Vol.
89
, pp.
E183
E192
.
6.
Zhang
,
W.
, and
Yao
,
Y. L.
, 2002, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
369
378
.
7.
Berth
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1997, “
Shock Waves From a Water Confined Laser Generated Plasma
,”
J. Appl. Phys.
0021-8979,
82
(
6
), pp.
2826
2832
.
8.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
, 1990, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
68
(
2
), pp.
775
784
.
9.
Caruso
,
A.
,
Guskov
,
S. Y.
,
Doskach
,
I. Y.
,
Zmitrenko
,
N. V.
,
Rozanov
,
V. B.
, and
Strangio
,
C.
, 2002, “
Laser-Generated Weak Shock Wave Propagation Dynamics in the Solids
,”
Proc. SPIE
0277-786X,
4424
, pp.
508
511
.
10.
Mok
,
C.-H.
, 1968, “
Effects of Solid Strength on the Propagation and Attenuation of Spherical and Plane Shock Waves
,”
J. Appl. Phys.
0021-8979,
39
(
4
), pp.
2072
2081
.
11.
Clauer
,
A. H.
,
Lahrman
,
D. F.
,
Dulaney
,
J. L.
, and
Toller
,
S. M.
, 2004, “
Method Using Laser Shock Processing to Provide Improved Residual Stress Profile Characteristics
,” U.S. Patent No. 6,664,506.
12.
Cottet
,
F.
, and
Boustie
,
M.
, 1989, “
Spallation Studies in Aluminum Targets Using Shock Waves Induced by Laser Irradiation at Various Pulse Durations
,”
J. Appl. Phys.
0021-8979,
66
(
9
), pp.
4067
4073
.
13.
Chen
,
H.
,
Kysar
,
J. W.
, and
Yao
,
Y. L.
, 2004, “
Characterization of Plastic Deformation Induced by Micro Scale Laser Shock Peening
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
713
723
.
14.
Fan
,
Y.
,
Wang
,
Y.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
, 2005, “
Wave-Solid Interactions in Laser Shock Induced Deformation Processes
,”
J. Appl. Phys.
0021-8979,
98
, pp.
104904
[1–11].
15.
VonNumann
,
J.
, and
Richtmyer
,
R. D.
, 1950, “
A Method for the Numerical Calculation of Hydrodynamic Shocks
,”
J. Appl. Phys.
0021-8979,
21
, pp.
232
237
.
16.
Assay
,
J. R.
, and
Shahipoor
,
M.
, 1992,
High-Pressure Shock Compression of Solids
,
Springer
,
New York
, pp.
8
12
.
17.
Zhang
,
W.
, and
Yao
,
Y. L.
, 2000, “
Microscale Laser Shock Processing—Modeling, Testing, and Microstructure Characterization
,”
J. Manuf. Process.
1526-6125,
3
(
2
), pp.
128
143
.
18.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
, 1983, “
Response of Various Metals to Large Torsional Strain Over a Large Range of Strain Rates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
105
, pp.
42
53
.
19.
Steinberg
,
D. J.
,
Cochran
,
S. G.
, and
Guinan
,
M. W.
, 1980, “
A Constitutive Model for Metals Applicable at High Strain Rate
,”
J. Appl. Phys.
0021-8979,
51
(
3
), pp.
1498
1504
.
You do not currently have access to this content.