The idea of using a bed-of-pins as a completely reconfigurable discrete tool surface (referred to as a reconfigurable pin-type tool) for forming or molding of mechanical components has been around for at least 140years. Interestingly, the state-of-the-art today differs little from early patents except for the introduction of powered actuation and computer control. To help explain why this promising manufacturing technology is not used more extensively in industry, this paper attempts to tell a complete story about reconfigurable pin-type tooling through analysis of the state-of-the-art academic and industrial research, and commercialization of the concept from the original patented concept in 1863. The authors begin by defining what a reconfigurable tool is and by describing what characteristics an ideal reconfigurable tool should have. Next, the history of reconfigurable tooling patents from 1863 to 2003 and related research from the late 1960s to the present is recounted. One major research effort that eventually led to the development of a commercial project was the U.S. government-sponsored Reconfigurable Tooling for Flexible Fabrication project. A critical analysis shows that the state-of-the-art in reconfigurable pin-type tooling meets all specifications of the defined “ideal tool” with the exception of spatial resolution and weight. Finally, the reserved response by industry to adopt reconfigurable pin-type tooling and future of reconfigurable tooling is discussed.

1.
Fleming
,
W.
, 1987, “
Vertical Three-Dimensional Image Screen
,” U.S. Patent No. 4,654,989, issued April 7.
2.
Can You Imagine website: http://www.cyi.net/http://www.cyi.net/, accessed on January 2006.
3.
Sillery
,
B.
, 2002, “
The Everything Contraption: Building a Die That Builds All
,”
Pop. Sci. (U.S.)
0161-7370,
260
(
6
), p.
41
.
4.
Hardt
,
D. E.
,
Boyce
,
M. C.
,
Ousterhout
,
K. B.
, and
Karafillis
,
A.
, 1992, “
A Flexible Forming System for Sheet Metal
,”
Proc, NSF Conference on Design and Manufacturing Systems Research
, Jan., pp.
77
86
.
5.
Kleespies
,
H. S.
, and
Crawford
,
R. H.
, 1998, “
Vacuum Forming of Compound Curved Surfaces With a Variable Geometry Mold
,”
J. Manuf. Syst.
0278-6125,
17
(
5
), pp.
325
337
.
6.
Finckenstein
,
E. V.
, and
Kleiner
,
M.
, 1991, “
Flexible Numerically Controlled Tool System for Hydro-Mechanical Deep Drawing
,”
CIRP Ann.
0007-8506,
40
(
1
), pp.
311
314
(in German).
7.
Eigen
,
G. F.
, 1992, “
Smoothing Methods for Discrete Die Forming
,” M.S. thesis, Department of Mechanical Engineering, M.I.T.
8.
Walczyk
,
D. F.
,
Hosford
,
J.
, and
Papazian
,
J.
, 2003, “
Using Reconfigurable Tooling and Surface Heating for Incremental Forming of Composite Aircraft Parts
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
25
(
2
), pp.
333
343
.
9.
Prabhakara
,
R.
, 2002, “
Incremental Forming of Thermoset Composite Lay-ups Using Active Tooling
,” M.S. thesis, Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute.
10.
Munro
,
C. B.
,
Walczyk
,
D. F.
,
Dvorak
,
G.
, and
Slusarski
,
S.
, 2004, “
Incremental Double Diaphragm Forming of Composite Materials Using Reconfigurable Tooling
,”
Proceedings of 2004 SME North American Manufacturing Research Conference (NAMRC)
,
Charlotte, NC
.
11.
Cochrane
,
J.
, 1863, “
Bending Metal Plates
,” U.S. Patent No. 39,886, issued September 15.
12.
Ansted
,
E. W.
, 1892, “
Machine for Bending and Forming Springs
,” U.S. Patent No. 483,094, issued September 20.
13.
Elkins
,
L. F.
, 1920, “
Die for Spring Forming Machines
,” U.S. Patent No. 1,331,630, issued February 24.
14.
Williams
,
C. J.
, and
Skinner
,
T.
, 1923, “
Spring Forming Device
,” U.S. Patent No. 1,465,152, issued August 14.
15.
Tegarden
,
J. E.
, 1957, “
Forming Machine
,” U.S. Patent No. 2,783,815, issued March 5.
16.
Morita
,
M.
, 1993, “
Leaf Spring Cambering Method and Apparatus
,” U.S. Patent No. 5,187,969, issued February 23.
17.
O’Kelley
,
J. F.
, 1945, “
Hood and Fender Jig
,” U.S. Patent No. 2,446,487, issued August 3.
18.
Walters
,
T.
, 1943, “
Press
,” U.S. Patent No. 2,334,520, issued November 16.
19.
Pinson
,
G. T.
, 1980, “
Apparatus for Forming Sheet Metal
,” U.S. Patent No. 4,212,188, issued July 15.
20.
Fuchs
,
A.
,
Radolfzellerstr
,
L. L.
, and
Konstanz
,
D. E.
, 1982, “
Method and Arrangement for Producing a Curved Sail
,” U.S. Patent No. 4,309,824, issued January 12.
21.
Kommineni
,
P.
,
Hollandsworth
,
P. E.
, and
Jones
,
J. W.
, 1988, “
Method of Shaping an Antenna Panel
,” U.S. Patent No. 4,731,144, issued March 15.
22.
Sherrill
,
D. E.
, and
Young
,
K. G.
, 2001, “
Apparatus for Constructing a Composite Structure
,” U.S. Patent No. 6,298,896 B1, issued October 9.
23.
Sherrill
,
D. E.
, and
Young
,
K. G.
, 2004, “
Method for Constructing a Composite Structure
,” U.S. Patent No. 6,761,785 B2, issued July 13.
24.
Hoffman
,
P. L.
, and
Florissant
,
M. O.
, 1998, “
Reconfigurable Modular Tooling System
,” U.S. Patent No. 5,851,563, issued December 22.
25.
Hess
,
F.
, 1931, “
Process and Apparatus for Manufacturing Automatically Accurate Individual Foot Supports for Shoes
,” U.S. Patent No. 1,826,783, issued October 13.
26.
Trudell
,
C. P.
, 1942, “
Sheet Metal Forming Apparatus
,” U.S. Patent No. 2,280,359, issued April 21.
27.
Humphrey
,
D. H.
, 1971, “
Mold Forming Device
,” U.S. Patent No. 3,596,869, issued August 3.
28.
Bernardon
,
E.
, and
Foley
,
M. F.
, 1992, “
Reconfigurable Fiber-Forming Resin Transfer System
,” U.S. Patent No. 5,151,277, issued September 29.
29.
Hoffman
,
P. L.
, and
Florissant
,
M. O.
, 1992, “
Conformable Tool
,” U.S. Patent No. 5,168,635, issued December 8.
30.
Umetsu
,
S.
, and
Toshihiko
,
M.
, 1993, “
Variable Mold Apparatus
,” U.S. Patent No. 5,192,560, issued March 9.
31.
Haas
,
E. G.
, and
Kesselman
,
M.
, 1996, “
Adjustable Form Die
,” U.S. Patent No. 5,546,784, issued August 20.
32.
Sullivan
,
E. V.
,
Haas
,
E. G.
,
Schwarz
,
R. C.
,
Kesselman
,
M.
,
Peck
,
A. N.
, and
Papazian
,
J. M.
, 2000, “
Individual Motor Pin Module
,” U.S. Patent No. 6,012,314, issued January 11.
33.
Nardiello
,
J. A.
,
Christ
,
R. J.
, and
Papazian
,
J. M.
, 2000, “
Block-Set Form Die Assembly
,” U.S. Patent No. 6,053,026, issued April 25.
34.
Haas
,
E. G.
,
Schwarz
,
R. C.
, and
Papazian
,
J. M.
, 2000, “
Modularized, Reconfigurable Heated Forming Tool
,” U.S. Patent No. 6,089,061, issued July 18.
35.
Papazian
,
J. M.
, Haas, E. G.,
Schwarz
,
R. C.
,
Nardiello
,
J. A.
, and
Melnichuk
,
J.
, 2001, “
Pin Tip Assembly in Tooling Apparatus for Forming Honeycomb Cores
,” U.S. Patent No. 6,209,380, issued April 3.
36.
Papazian
,
J. M.
,
Nardiello
,
J. A.
,
Schwarz
,
R. C.
, and
Melnichuk
,
J.
, 2002, “
System and Method for Forming Sheet Metal Using a Reconfigurable Tool
,” U.S. Patent No. 6,363,767, issued April 2.
37.
Meilunas
,
R. J.
,
Dillon
,
G. P.
, and
Nardiello
,
J. A.
, 2002, “
System for Constructing a Laminate
,” U.S. Patent No. 6,484,776, issued November 26.
38.
Haas
,
E. G.
,
Schwarz
,
R. C.
, and
Papazian
,
J. M.
, 2003, “
Single-Die Modularized, Reconfigurable Honeycomb Core Forming Tool
,” U.S. Patent No. 6,578,399, issued June 17.
39.
Berteau
,
J.
, 1994, “
Variable-Shape Mold
,” U.S. Patent No. 5,330,343, issued July 19.
40.
Schroeder
,
T.
, and
Stevenson
,
R.
, 1996, “
Surface Generating Device Suitable for Generating a Die, Mold or Fixture Surface
,” U.S. Patent No. 5,513,972, issued May 7.
41.
Schroeder
,
T.
, and
Stevenson
,
R.
, 1998, “
Device for Generating a Fixture
,” U.S. Patent No. 5,738,345, issued April 14.
42.
Wakefield
,
W. H.
, 1943, “
Die and Method of Making Same
,” U.S. Patent No. 2,332,360, issued October 19.
43.
Hicks
,
A. A.
, 1961, “
Three-Dimensional Die
,” U.S. Patent No. 2,968,838, issued January 24.
44.
Whitacre
,
F. E.
, 1971, “
Incremental Die Construction Having a Hole Piercing Capability
,” U.S. Patent No. 3,559,450, issued February 2.
45.
Todoroki
,
M.
,
Imazu
,
H.
,
Nomura
,
H.
,
Yamaguchi
,
N.
,
Zama
,
J. A.
,
Ishibashi
,
K.
, and
Yamamoto
,
K.
, 1993, “
Apparatus and Method for Producing Variable Configuration Die
,” U.S. Patent No. 5,253,176, issued October 12.
46.
Hong
,
K.
, 1994, “
Modeling Mechanism
,” U.S. Patent No. 5,281,117, issued January 25.
47.
Laskowski
,
J. S.
, and
Pintz
,
A.
, 1998, “
Computerized System For Lost Foam Casting Process Using Rapid Tooling Set-Up
,” U.S. Patent No. 5,796,620, issued August 18.
48.
Nakajima
,
N.
, 1969, “
A Newly Developed Technique to Fabricate Complicated Dies and Electrodes With Wires
,”
Bull. JSME
0021-3764,
12
(
54
), pp.
1546
1554
.
49.
Wolak
,
J.
,
Bodoia
,
J. R.
, and
Sherrer
,
R. E.
, 1973, “
A Preliminary Study of an Infinitely Variable Surface Generator and its Application to Die Forming
,”
Manuf. Eng. Trans.
0363-700X,
II
, pp.
155
160
.
50.
Wright
,
P. K.
, and
Holzer
,
A. J.
, 1981, “
A Programmable Die for the Powder Metallurgy Process
,”
Proceedings of NAMRC
,
9
, pp.
65
70
.
51.
Owodunni
,
O. O.
,
Diaz-Rozo
,
J.
, and
Hinduja
,
S.
, 2004, “
Development and Evaluation of a Low-Cost Computer Controlled Reconfigurable Rapid Tool
,”
Comput.-Aided Des. Appl.
,
1
(
1–4
), pp.
101
108
.
52.
Hardt
,
D. E.
, and
Gossard
,
D. C.
, 1980, “
A Variable Geometry Die for Sheet Metal Forming: Machine Design and Control
,”
Proc. Joint Automatic Control Conference
, August.
53.
Hardt
,
D. E.
,
Olson
,
B. A.
,
Allison
,
B. T.
, and
Pasch
,
K.
, 1981, “
Sheet Metal Forming With Discrete Die Surfaces
,”
Ninth North American Manufacturing Research Conference Proceedings
, May, pp.
140
144
.
54.
Hardt
,
D. E.
, and
Webb
,
R. D.
, 1982, “
Sheet Metal Die Forming Using Closed-Loop Shape Control
,”
CIRP Ann.
0007-8506,
31
, pp.
165
169
.
55.
Hardt
,
D. E.
,
Webb
,
R. D.
, and
Robinson
,
R. E.
, 1985, “
Closed-Loop Control of Die Stamped Sheet Metal Parts: Algorithm Development and Flexible Forming Machine Design
,”
Proc. Advanced Systems for Manufacturing Conference
, May, pp.
21
28
.
56.
Webb
,
R. D.
, and
Hardt
,
D. E.
, 1991, “
A Transfer Function Description of Sheet Metal Forming for Process Control
,”
ASME J. Eng. Ind.
0022-0817,
113
, p.
44
.
57.
Hardt
,
D. E.
,
Boyce
,
M. C.
,
Ousterhout
,
K. B.
,
Sim
,
H. B.
, and
Karafillis
,
A.
, 1992, “
Closed-Loop Control of Sheet Metal Forming Process: Controller Analysis and Three Dimensional Experiments
,”
Proc, NSF Conference on Design and Manufacturing Systems Research
, January, 1991.
58.
Walczyk
,
D. F.
, and
Hardt
,
D. E.
, 1998, “
Design and Analysis of Reconfigurable Discrete Dies for Sheet Metal Forming
,”
J. Manuf. Syst.
0278-6125,
17
(
6
), pp.
436
454
.
59.
Walczyk
,
D. F.
, and
Hardt
,
D. E.
, 1999, “
A Comparison of Rapid Fabrication Methods for Sheet Metal Forming Dies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
214
224
.
60.
Walczyk
,
D. F.
,
Lakshmikanthan
,
J.
, and
Kirk
,
D. R.
, 1998, “
Development of a Reconfigurable Tool for Forming of Aircraft Panels
,”
J. Manuf. Syst.
0278-6125,
17
(
4
), pp.
287
296
.
61.
Im
,
Y.
,
Walczyk
,
D. F.
,
Schwarz
,
R. C.
, and
Papazian
,
J. M.
, 2000, “
A Comparison of Pin Actuation Schemes for Large-Scale Discrete Dies
,”
J. Manuf. Process.
1526-6125,
2
(
4
), pp.
247
257
.
62.
Cyril Bath Company website, 2005, http://www.cyrilbath.comhttp://www.cyrilbath.com.
63.
Papazian
,
J. M.
, 2002, “
Tools of Change: Reconfigurable Forming Dies Raise the Efficiency of Small-Lot Production
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
124
(
2
), pp.
52
55
.
64.
North Sails North America website, 2005, http://na.northsails.com/http://na.northsails.com/.
66.
Surface Generation website: http://www.surface-generation.comhttp://www.surface-generation.com, accessed on December 2006.
67.
Haas
,
E.
,
Schwarz
,
R.
, and
Papazian
,
J.
, 2002, “
Design and Test of a Reconfigurable Forming Die
,”
J. Manuf. Process.
1526-6125,
4
(
1
), pp.
77
85
.
68.
Boas
,
R. C.
, 1997, “
Sequential Setup Mechanism Design for a Reconfigurable Sheet Metal Forming Die
,” M.S. thesis, Department of Mechanical Engineering, M.I.T.
69.
Maxon Precision Motor, Inc.
website: http://www.maxonmotorusa.com/http://www.maxonmotorusa.com/, accessed on September 2006.
70.
Gladwell
,
M.
, 2002,
The Tipping Point: How Little Things Can Make a Big Difference
,
Little, Brown & Co.
,
New York
.
You do not currently have access to this content.