A continuum-based microstructure-level material model for simulation of polycarbonate carbon nanotube (CNT) composite machining has been developed wherein polycarbonate and CNT phases are modeled separately. A parametrization scheme is developed to characterize the microstructure of composites having different loadings of carbon nanotubes. The Mulliken and Boyce constitutive model [2006, “Mechanics of the Rate Dependent Elastic Plastic Deformation of Glassy Polymers from Low to High Strair Rates,” Int. J. Solids Struct., 43(5), pp. 1331–1356] for polycarbonate has been modified and implemented to capture thermal effects. The CNT phase is modeled as a linear elastic material. Dynamic mechanical analyzer tests are conducted on the polycarbonate phase to capture the changes in material behavior with temperature and strain rate. Compression tests are performed over a wide range of strain rates for model validation. The model predictions for yield stress are seen to be within 10% of the experimental results for all the materials tested. The model is used to study the effect of weight fraction, length, and orientation of CNTs on the mechanical behavior of the composites.

1.
Du
,
F.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2003, “
Coagulation Method for Preparing Single-Walled Carbon Nanotube∕PolyMethyl Methacrylate Composites and Their Modulus, Electrical Conductivity, and Thermal Stability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
41
, pp.
3333
3338
.
2.
Stewart
,
R.
, 2004, “
Nanocomposites: Microscopic Reinforcements Boost Polymer Performance
,”
Plast. Eng. (N. Y.)
1040-2527,
60
(
5
), pp.
22
29
.
3.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
J.
, 2005, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
465
473
.
4.
Komanduri
,
R.
,
Lee
,
M.
, and
Raff
,
L. M.
, 2004, “
The Significance of Normal Rake in Oblique Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
10
), pp.
1115
1124
.
5.
Huang
,
Z. G.
,
Guo
,
Z. N.
,
Chen
,
X.
,
Yue
,
T. M.
,
To
,
S.
, and
Lee
,
W. B.
, 2006, “
Molecular Dynamics Simulation for Ultrafine Machining
,”
Mater. Manuf. Processes
1042-6914,
21
(
4
), pp.
393
397
.
6.
Vogler
,
M.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2003, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
202
209
.
7.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Bammann
,
D. J.
, 2002, “
Microstructure-Level Modeling of Ductile Iron Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
162
169
.
8.
Park
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2006, “
Microstructure-Level Model for the Prediction of Tool Failure in WC-Co Cutting Tool Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
739
748
.
9.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
, 2002, “
Constitutive Modeling of Nanotube-Reinforces Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
63
(
11
), pp.
1671
1687
.
10.
Cantournet
,
S.
,
Boyce
,
M. C.
, and
Tsou
,
A. H.
, 2006, “
Micromechanics and Macromechanics of Carbon Nanotube-Enhanced Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
55
(
6
), pp.
1321
1339
.
11.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2006, “
Mechanics of the Rate Dependent Elastic Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
43
(
5
), pp.
1331
1356
.
12.
Martin
,
P. M.
,
Matson
,
D. W.
,
Bennett
,
W. D.
, and
Hammerstrom
,
D. J.
, 1998, “
Fabrication of Plastic Microfluidic Components
,”
Proc. SPIE
0277-786X,
3515
, pp.
172
176
.
13.
Duan
,
Y.
,
Saiqal
,
A.
,
Greif
,
R.
, and
Zimmerman
,
M. A.
, 2001, “
A Uniform Phenomenological Model for Glassy and Semi-Crystalline Polymers
,”
Polym. Eng. Sci.
0032-3888,
41
(
8
), pp.
1322
1328
.
14.
Drozdov
,
A. D.
, 1998, “
A Model for the Nonlinear Viscoelastic Response in Polymers at Finite Strain
,”
Int. J. Solids Struct.
0020-7683,
35
(
18
), pp.
2315
2347
.
15.
Colak
,
O. U.
, 2005, “
Modeling Deformation Behavior of Polymers With Viscoplasticity Theory Based on Overstress
,”
Int. J. Plast.
0749-6419,
21
, pp.
145
160
.
16.
McNally
,
T.
,
Potschke
,
P.
,
Halley
,
P.
,
Murphy
,
M.
,
Martin
,
D.
,
Bell
,
S. E. J.
,
Brennan
,
G. P.
,
Bein
,
D.
,
Lemoine
,
P.
, and
Quinn
,
J. P.
, 2005, “
Polyethylene Multiwalled Carbon Nanotube Composites
,”
Polymer
0032-3861,
46
(
19
), pp.
8222
8232
.
17.
Koganemaru
,
A.
,
Bin
,
Y.
,
Agari
,
Y.
, and
Matsuo
,
M.
, 2004, “
Composites of Polyacrylonitrile and Multiwalled Carbon Nanotubes Prepared by Gelation∕Crystallization From Solution
,”
Adv. Funct. Mater.
1616-301X,
14
(
9
), pp.
842
850
.
18.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
, pp.
637
640
.
19.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
Three Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
(
2
), pp.
389
412
.
20.
Li
,
Z.
, and
Lambros
,
J.
, 2001, “
Strain Rate Effects on Thermomechanical Behavior of Polymers
,”
Int. J. Solids Struct.
0020-7683,
38
(
20
), pp.
3549
3562
.
21.
Salvetat-Delmotte
,
J. P.
, and
Rubio
,
A.
, 2002, “
Mechanical Properties of Carbon Nanotubes: A Fiber Digest for Beginners
,”
Carbon
0008-6223,
40
(
10
), pp.
1729
1734
.
22.
Lu
,
J. P.
, 1997, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
0031-9007,
79
(
7
), pp.
1297
1300
.
23.
Ghasemi-Nejhad
,
M. N.
, and
Askari
,
D.
, 2005, “
Mechanical Properties Modeling of Carbon Single-Walled Nanotubes: A Finite Element Method
,”
J. Comput. Theor. Nanosci.
1546-1955,
2
(
2
), pp.
298
318
.
24.
Ozaki
,
T.
,
Iwasa
,
Y.
, and
Mitani
,
T.
, 2000, “
Stiffness of Single-Walled Carbon Nanotubes Under Large Strain
,”
Phys. Rev. Lett.
0031-9007,
84
(
8
), pp.
1712
1715
.
25.
Krieg
,
R. D.
, and
Krieg
,
D. B.
, 1977, “
Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model
,”
ASME J. Pressure Vessel Technol.
0094-9930,
99
(
4
), pp.
510
515
.
26.
Cady
,
C. M.
,
Blumenthal
,
W. R.
,
Gray
, III
G. T.
, and
Idar
,
D. J.
, 2003, “
Determining the Constitutive Response of Polymeric Materials as a Function of Temperature and Strain Rate
,”
J. Phys. IV
1155-4339,
110
, pp.
27
32
.
27.
Huang
,
H.
,
Liu
,
C.
,
Wu
,
Y.
, and
Fan
,
S.
, 2005, “
Aligned Carbon Nanotube Composite Films for Thermal Management
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
17
, pp.
1652
1656
.
You do not currently have access to this content.