A microstructure-level finite element machining model has been developed to simulate the machining of carbon nanotube (CNT) reinforced polymer composites. The model integrates a failure model with a previously developed microstructure-based material model. The competition between ductile and brittle modes of failure in the polymer phase (polycarbonate) is captured by implementing the Gearing and Anand failure model calibrated at different temperatures. The CNT phase is given a simple strain-to-failure criterion. The proposed machining model has been validated at different orthogonal machining conditions for the plain polycarbonate and for composites with two different percentage loadings of CNTs. On an average, the model is seen to successfully predict the cutting forces with an accuracy of 8% and the thrust forces with an accuracy of 13.4% for all the materials. The machining model also predicts the continuous chip morphology and formation of adiabatic shear bands in plain polycarbonate and for composites with lower loadings of CNTs. On an average, the chip thicknesses are predicted within an accuracy of 14% for plain polycarbonate and 10% for the CNT composites.

1.
Dipaolo
,
G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 1996, “
An Experimental Investigation of the Crack Growth Phenomenon for Drilling of Fiber Reinforced Composite Materials
,”
ASME J. Eng. Ind.
0022-0817,
118
(
1
), pp.
104
110
.
2.
Puw
,
H. Y.
, and
Hocheng
,
H.
, 1993, “
Machinability Test of Carbon Fiber-Reinforced Plastics in Milling
,”
Mater. Manuf. Processes
1042-6914,
8
(
6
), pp.
717
729
.
3.
Bhatnagar
,
N.
,
Ramakrishnan
,
N.
,
Naik
,
N. K.
, and
Komanduri
,
R.
, 1995, “
On the Machining of Fiber Reinforced Plastic (FRP) Composite Laminate
,”
Int. J. Mach. Tools Manuf.
0890-6955,
35
(
5
), pp.
701
716
.
4.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
J.
, 2005, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
465
473
.
5.
Merchant
,
M. E.
, 1945, “
Mechanics of Metal Cutting Process, I. Orthogonal Cutting
,”
J. Appl. Phys.
0021-8979,
16
, pp.
267
275
.
6.
Lee
,
E. H.
, and
Shafer
,
B. W.
, 1951, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
405
413
.
7.
Vogler
,
M.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2003, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
202
209
.
8.
Komanduri
,
R.
,
Lee
,
M.
, and
Raff
,
L. M.
, 2004, “
The Significance of Normal Rake in Oblique Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
10
), pp.
1115
1124
.
9.
Huang
,
Z. G.
,
Guo
,
Z. N.
,
Chen
,
X.
,
Yue
,
T. M.
,
To
,
S.
, and
Lee
,
W. B.
, 2006, “
Molecular Dynamics Simulation for Ultrafine Machining
,”
Mater. Manuf. Processes
1042-6914,
21
(
4
), pp.
393
397
.
10.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Bammann
,
D. J.
, 2002, “
Microstructure-Level Modeling of Ductile Iron Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
162
169
.
11.
Park
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2006, “
Microstructure-Level Model for the Prediction of Tool Failure in WC-Co Cutting Tool Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
739
748
.
12.
Dikshit
,
A.
, 2007, “
A Microstructure-Level Finite Element-Based Model for Simulation of Machining of Carbon Nanotube Reinforced Polymer Composites
,” MS thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
13.
Gearing
,
B. P.
, and
Anand
,
L.
, 2004, “
Notch-Sensitive Failure of Polycarbonate
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
827
845
.
14.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2006, “
Mechanics of the Rate Dependent Elastic Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
43
(
5
), pp.
1331
1356
.
15.
Legrand
,
D. G.
, 1969, “
Crazing, Yielding, and Fracture of Polymers. I. Ductile Brittle Transition in Polycarbonate
,”
J. Appl. Polym. Sci.
0021-8995,
13
(
10
), pp.
2129
2147
.
16.
Argon
,
A. S.
, and
Salama
,
M.
, 1975, “
Mechanism of Fracture in Glassy Materials Capable of Some Inelastic Deformation
,”
Mater. Sci. Eng.
0025-5416,
23
(
2–3
), pp.
219
230
.
17.
Nied
,
H. F.
,
Stokes
,
V. K.
, and
Ysseldyke
,
D. A.
, 1987, “
High-Temperature Large-Strain Behavior of Polycarbonate, Polyetherimide and Poly(Butylene Terephthalate)
,”
Polym. Eng. Sci.
0032-3888,
27
(
1
), pp.
101
107
.
18.
Nimmer
,
R. P.
, and
Woods
,
J. T.
, 1992, “
An Investigation of Brittle Failure in Ductile Notch-Sensitive Thermoplastics
,”
Polym. Eng. Sci.
0032-3888,
32
(
16
), pp.
1126
1137
.
19.
Song
,
Z.
,
Huang
,
W.
,
Ni
,
H.
,
Liu
,
M.
, and
Xiang
,
H.
, 2003, “
Study of the Mutual Damage of Polycarbonate Both in Fatigue and Creep
,”
J. Aeronaut. Mater.
1005-5053,
23
(
4
), pp.
44
47
.
20.
Ravi-Chandar
,
K.
, 1995, “
On the Failure Mode Transitions in Polycarbonate Under Dynamics Mixed-Mode Loading
,”
Int. J. Solids Struct.
0020-7683,
32
(
6–7
), pp.
925
938
.
21.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
(
4
), pp.
341
348
.
22.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Shatz
,
G. C.
, and
Ruoff
,
R. S.
, 2002, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
0163-1829,
65
, p.
235430
23.
Meo
,
M.
, and
Rossi
,
M.
, 2006, “
Tensile Failure Prediction of Single Wall Carbon Nanotube
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
2589
2599
.
24.
Xiao
,
J. R.
,
Gamma
,
B. A.
, and
Gillespie
,
J. W.
, 2005, “
An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
366
371
.
25.
Lu
,
J.
, and
Zhang
,
L.
, 2006, “
Analysis of Localized Failure of Single-Wall Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
35
, pp.
432
441
.
26.
ABAQUS, 2005, Reference Manuals, Hibbit, Karlsson & Sorenson Inc., Pawtucket, RI.
27.
Stuart
,
B. H.
, 1997, “
Scratch Friction Studies of Polycarbonate
,”
Polym. Test.
0142-9418,
16
(
5
), pp.
517
522
.
28.
Rizzo
,
G.
, and
Titomanlio
,
G.
, 1981, “
The Recovery After Bending of Polycarbonate Sheets
,”
Rheol. Acta
0035-4511,
20
(
2
), pp.
133
138
.
29.
Park
,
J. B.
, and
Uhlmann
,
D. R.
, 1973, “
Recovery of Deformed Polymers. III. Thermal Properties
,”
J. Appl. Phys.
0021-8979,
44
(
1
), pp.
201
206
.
30.
Bucaille
,
J. L.
,
Felder
,
E.
, and
Hochstetter
,
G.
, 2004, “
Experimental and Three-Dimensional Finite Element Study of Scratch Test of Polymers at Large Deformations
,”
ASME J. Tribol.
0742-4787,
126
(
2
), pp.
372
379
.
You do not currently have access to this content.