Anisotropy of workpiece crystals has a significant effect in micromachining since the uncut chip thickness values used in micromachining are commensurate with characteristic dimensions of crystals in crystalline materials. This paper presents an experimental investigation on orthogonal micromachining of single-crystal aluminum at different crystallographic orientations for varying uncut chip thicknesses and cutting speeds using a diamond tool. Micromachining forces, specific energies, effective coefficient of friction, shear angles, shear stresses, and chip morphology were examined for six crystallographic orientations at uncut chip thicknesses ranging from 5μmto20μm and cutting speeds ranging from 5mmsto15mms. Three distinct types of forces were observed, including steady (Type-I), bistable (Type-II), and fluctuating (Type-III) force signatures. The forces were seen to vary by as much as threefold with crystallographic orientation. Although the effect of cutting speed was small, the uncut chip thickness was seen to have a significant orientation-dependent effect on average forces. Chip morphology, analyzed under scanning electron microscopy, showed shear-front lamella, the periodicity of which was seen to vary with crystallographic orientations and uncut chip thicknesses.

1.
Benavides
,
G. L.
,
Adams
,
D. P.
, and
Yang
,
P.
, 2001, “
Meso-Machining Capabilities
,” Technical Report No. SAND2001-1708,
Sandia National Laboratories
, Albuquerque, NM.
2.
Ehmann
,
K. F.
,
Bourell
,
D.
,
Culpepper
,
M. L.
,
Hodgson
,
T. J.
,
Kurfess
,
T. R.
,
Madou
,
M.
,
Rajurkar
,
K.
, and
DeVor
,
R. E.
, 2005,
WTEC Panel Report on International Assessment of Research and Development in Micromanufacturing
,
World Technology Evaluation Center (WTEC), Inc.
,
Baltimore, MD
.
3.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
, 2004, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
666
678
.
4.
Filiz
,
S.
,
Conley
,
C.
,
Wasserman
,
M.
, and
Ozdoganlar
,
O.
, 2007, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
1088
1100
.
5.
Xie
,
L.
,
Brownridge
,
S. D.
,
Ozdoganlar
,
O. B.
, and
Weiss
,
L. E.
, 2006, “
The Viability of Micromilling for Manufacturing Mechanical Attachment Components for Medical Applications
,”
Trans. NAMRI/SME
1047-3025,
34
, pp.
445
452
.
6.
Kim
,
C.-J.
,
Bono
,
M.
, and
Ni
,
J.
, 2002, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. NAMRI/SME
1047-3025,
30
, pp.
247
254
.
7.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machine Performance in Micro-Endmilling, Part I: Surface Generation
,”
J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
685
694
.
8.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machine Performance in Micro-Endmilling, Part II: Cutting Force Prediction
,”
J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
695
705
.
9.
Dow
,
T. A.
, and
Scattergood
,
R. O.
, 2003, “
Mesoscale and Microscale Manufacturing Processes: Challenges for Materials, Fabrication and Metrology
,”
Proceedings of the ASPE Winter Topical Meeting
, Vol.
28
, pp.
14
19
.
10.
Spath
,
D.
, and
Huntrup
,
V.
, 1999, “
Micro-Milling of Steel for Mold Manufacturing—Influences of Material, Tools and Process Parameters
,”
Precis. Eng.
0141-6359,
1
, pp.
203
206
.
11.
Moriwaki
,
T.
, and
Okuda
,
K.
, 1989, “
Machinability of Copper in Ultra-Precision Micro-Diamond Cutting
,”
CIRP Ann.
0007-8506,
38
(
1
), pp.
115
118
.
12.
Eda
,
H.
,
Kishi
,
K.
, and
Ueno
,
H.
, 1987, “
Diamond Machining Using a Prototype Ultra-Precision Lathe
,”
Precis. Eng.
0141-6359,
9
(
3
), pp.
115
122
.
13.
Ueda
,
K.
,
Iwata
,
K.
, and
Nakajama
,
K.
, 1980, “
Chip Formation Mechanism in Single Crystal Cutting β-Brass
,”
CIRP Ann.
0007-8506,
29
(
1
), pp.
41
46
.
14.
Koenig
,
W.
, and
Spenrath
,
N.
, 1991, “
Influence of the Crystallographic Structure of the Substrate Material on Surface Quality and Cutting Forces in Micromachining
,”
Proceedings of the International Precision Engineering Seminar
, pp.
141
151
.
15.
vonTurkovich
,
B.
, and
Black
,
J. T.
, 1970, “
Micro-Machining of Copper and Aluminum Crystals
,”
ASME J. Eng. Ind.
0022-0817,
92
, pp.
130
134
.
16.
Ramalingam
,
S.
, and
Black
,
J. T.
, 1972, “
On the Metal Physical Considerations in the Machining of Metals
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
1215
1224
.
17.
To
,
S.
,
Lee
,
W. B.
, and
Chan
,
C. Y.
, 1997, “
Ultraprecision Diamond Turning of Aluminum Single Crystals
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
157
162
.
18.
Yuan
,
Z. J.
,
Lee
,
W. B.
,
Yao
,
Y. X.
, and
Zhou
,
M.
, 1994, “
Effect of Crystallographic Orientation on Cutting Forces and Surface Quality in Diamond Cutting of Single Crystal
,”
CIRP Ann.
0007-8506,
43
(
1
), pp.
39
42
.
19.
Zhou
,
M.
,
Ngoi
,
B. K. A.
,
Zhong
,
Z. W.
, and
Wang
,
X. J.
, 2001, “
The Effect of Material Microstructure on Microcutting Processes
,”
Mater. Manuf. Processes
1042-6914,
16
, pp.
815
828
.
20.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2003, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
202
209
.
21.
Clarebrough
,
L. M.
, and
Ogilivie
,
G. J.
, 1950,
Microstructure by Machining, Machining Theory and Practice
,
ASM
,
Metals Park, OH
.
22.
Black
,
J. T.
, 1969, “
Plastic Deformation in Ultramicrotomy of Copper and Aluminum
,” Ph.D. thesis, University of Illinois, Urbana, IL.
23.
Black
,
J. T.
, 1971, “
On the Fundamental Mechanism of Large Strain Plastic Deformation
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
507
526
.
24.
Black
,
J.
, 1972, “
Shear-Front-Lamella Structure in Large Strain Plastic Deformation Processes
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
307
316
.
25.
Black
,
J. T.
, 1979, “
Flow Stress Model in Metal Cutting
,”
ASME J. Eng. Ind.
0022-0817,
101
, pp.
403
415
.
26.
Blake
,
P. N.
, and
Scattergood
,
R. O.
, 1986, “
Chip Topography of Diamond Turned Ductile Metals
,”
Proc. SPIE
0277-786X,
676
, pp.
96
103
.
27.
Cohen
,
P. H.
, 1982, “
The Orthogonal In-Situ Machining of Single and Polycrystalline Aluminum and Copper
,” Ph.D. thesis, Ohio State University, Columbus, OH.
28.
Sato
,
M.
,
Kato
,
Y.
, and
Tuchiya
,
K.
, 1978, “
Effects of Material Anisotropy Upon the Cutting Mechanism
,”
Trans. Jpn. Inst. Met.
0021-4434,
19
, pp.
530
536
.
29.
Sato
,
M.
,
Kato
,
Y.
, and
Tsutiya
,
K.
, 1979, “
Effects of Crystal Orientation on the Flow Mechanism in Cutting Aluminum Single Crystal
,”
Trans. Jpn. Inst. Met.
0021-4434,
20
, pp.
414
422
.
30.
Sato
,
M.
,
Kato
,
Y.
,
Tsutiya
,
K.
, and
Aoki
,
S.
, 1981, “
Effects of Crystal Orientation on the Cutting Mechanism of Aluminum Single Crystal
,”
Bull. JSME
0021-3764,
24
, pp.
1864
1870
.
31.
Sato
,
M.
,
Kato
,
Y.
,
Aoki
,
S.
, and
Ikoma
,
A.
, 1983, “
Effects of Crystal Orientation on the Cutting Mechanism of Aluminum Single Crystal
,”
Bull. JSME
0021-3764,
26
(
215
), pp.
890
896
.
32.
Wang
,
Z. Y.
,
Sahay
,
C.
, and
Rajurkar
,
K. P.
, 1994, “
Micro-Turning of Copper With Monocrystal Diamond Tool
,”
Proceedings of the First S.M. Wu Symposium on Manufacturing Science
, Vol.
1
, pp.
97
100
.
33.
Zhou
,
M.
, and
Ngoi
,
B. K. A.
, 2001, “
Effect of Tool and Workpiece Anisotropy on Microcutting Processes
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
215
, pp.
13
19
.
34.
Moriwaki
,
T.
,
Sugimura
,
N.
,
Manabe
,
K.
, and
Iwata
,
K.
, 1991, “
A Study on Orthogonal Micro Machining of Single Crystal Copper
,”
Trans. NAMRI/SME
1047-3025,
XIX
, pp.
177
182
.
35.
Moriwaki
,
T.
,
Okuda
,
K.
, and
Shen
,
J. G.
, 1993, “
Study on Ultraprecision Orthogonal Microdiamond Cutting of Single-Crystal Copper
,”
JSME Int. J., Ser. C
1340-8062,
36
, pp.
400
406
.
36.
Lee
,
W.
,
To
,
S.
, and
Cheung
,
C. F.
, 2000, “
Effect of Crystallographic Orientation in Diamond Turning of Copper Single Crystals
,”
Scr. Mater.
1359-6462,
42
, pp.
937
945
.
37.
Sato
,
M.
,
Yamazaki
,
T.
,
Shimizu
,
Y.
, and
Takabayashi
,
T.
, 1991, “
A Study on the Microcutting of Aluminum Single Crystals
,”
JSME Int. J., Ser. III
0914-8825,
34
(
4
), pp.
540
545
.
38.
Lee
,
W. B.
,
Cheung
,
C. F.
, and
To
,
S.
, 2003, “
Friction-Induced Fluctuation of Cutting Forces in the Diamond Turning of Aluminum Single Crystals
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
, pp.
615
631
.
39.
Jasinevicius
,
R. G.
,
Duduch
,
J. G.
,
Porto
,
A. J. V.
, and
Purquerio
,
B. M.
, 1999, “
Critical Aspects on the Behavior of Material From the Mechanical Tool-Workpiece Interaction in Single Point Diamond Turning
,”
J. Braz. Soc. Mech. Sci.
0100-7386,
21
(
3
), pp.
509
518
.
40.
Moriwaki
,
T.
,
Sigimura
,
N.
, and
Luan
,
S.
, 1993, “
Combined Stress, Material Flow and Heat Analysis of Orthogonal Micromachining of Copper
,”
CIRP Ann.
0007-8506,
42
, pp.
75
78
.
41.
Donaldson
,
R. R.
,
Syn
,
C. K.
, and
Taylor
,
J. S.
, 1987, “
Minimum Thickness of Cut in Diamond Turning of Electroplated Copper
,”
Second Annual ASPE Conference
,
Columbus, OH
.
42.
Ikawa
,
N.
,
Donaldson
,
R.
,
Komanduri
,
R.
,
Koenig
,
W.
,
Aachen
,
T.
,
McKeown
,
P.
,
Moriwaki
,
T.
, and
Stowers
,
I.
, 1991, “
Ultraprecision Metal Cutting. The Past, the Present and the Future
,”
CIRP Ann.
0007-8506,
40
(
2
), pp.
587
594
.
43.
Lucca
,
D. A.
, and
Seo
,
Y. W.
, 1993, “
Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
83
86
.
44.
Drescher
,
J.
, 1993, “
Scanning Electron Microscopic Technique for Imaging a Diamond Tool Edge
,”
Precis. Eng.
0141-6359,
15
(
1
), pp.
112
114
.
45.
Evans
,
C.
,
Polvani
,
R.
,
Postek
,
M.
, and
Rhorer
,
R.
, 1987, “
Some Observations on Tool Sharpness and Sub-Surface Damage in Single Point Diamond Turning
,”
Proc. SPIE
0277-786X,
802
, pp.
52
66
.
46.
Kocks
,
U. F.
,
Tome
,
C. N.
, and
Wenk
,
H. R.
, 1998,
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,
Cambridge University Press
,
Cambridge
.
47.
Merchant
,
M. E.
, 1945, “
Mechanics of Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
0021-8979,
16
, pp.
267
275
.
You do not currently have access to this content.