Abstract

Machine failures in manufacturing systems interrupt production operations and cause production loss. The conventional methods for failure prevention are to perform preventive maintenance before failure occurs. In these methods, a fixed maintenance threshold (FMT) is obtained using the lifetime distribution of each machine. This threshold can then be used to trigger maintenance work-orders. A problem with the conventional technique is that it does not consider the updated state of the system, which continues to change before and after maintenance. Therefore, unnecessarily high costs can be incurred due to unexpected equipment failure (lack of maintenance) or excessive maintenance. In this paper, a reliability-based dynamic maintenance threshold (DMT) is calculated based on the updated equipment status. The benefits of the DMT are demonstrated in a numerical case study on a drilling process. The results illustrate that the maintenance policy using the DMT can reduce unscheduled downtime, increase equipment availability, and utilize the equipment remaining useful life more effectively than a conventional FMT-based maintenance policy.

1.
Bevilacqua
,
M.
, and
Braglia
,
M.
, 2000, “
The Analytical Hierarchy Process Applied to Maintenance Strategy Selection
,”
Reliab. Eng. Syst. Saf.
0951-8320,
70
(
1
), pp.
71
83
.
2.
Mobley
,
R. K.
, 2002,
An Introduction to Predictive Maintenance
, 2nd ed.,
Elsevier Science
,
New York
.
3.
Wang
,
H.
, 2002, “
A Survey of Maintenance Policies of Deteriorating Systems
,”
Eur. J. Oper. Res.
0377-2217,
139
(
3
), pp.
469
489
.
4.
Marseguerra
,
M.
,
Zio
,
E.
, and
Podofillini
,
L.
, 2002, “
Condition Based Optimization by Means of Genetic Algorithms and Monte Carlo Simulation
,”
Reliab. Eng. Syst. Saf.
0951-8320,
67
(
3
), pp.
215
232
.
5.
Gebraeel
,
N.
,
Lawley
,
M. A.
,
Li
,
R.
, and
Ryan
,
J. K.
, 2005, “
Residual-Life Distributions From Component Degradation Signals: A Bayesian Approach
,”
IIE Trans.
0740-817X,
37
, pp.
543
557
.
6.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
, 2006, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
0888-3270,
20
, pp.
1483
1510
.
7.
Grall
,
A.
,
Berenguer
,
C.
, and
Dieulle
,
L.
, 2002, “
A Condition-Based Maintenance Policy for Stochastically Deteriorating Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
76
(
2
), pp.
167
180
.
8.
Dieulle
,
L.
,
Berenguer
,
C.
,
Grall
,
A.
, and
Roussignol
,
M.
, 2003, “
Sequential Condition-Based Scheduling for a Deteriorating System
,”
Eur. J. Oper. Res.
0377-2217,
150
, pp.
451
461
.
9.
Liao
,
H.
,
Elsayed
,
A. E.
, and
Chan
,
L. Y.
, 2006, “
Maintenance of Continuously Monitored Degrading Systems
,”
Eur. J. Oper. Res.
0377-2217,
175
, pp.
821
835
.
10.
Van Noortwijk
,
J. M.
,
Cooke
,
R. M.
, and
Kok
,
M.
, 1995, “
A Bayesian Failure Model Based on Isotropic Deterioration
,”
Eur. J. Oper. Res.
0377-2217,
82
, pp.
270
282
.
11.
Zhou
,
X.
,
Xi
,
L.
, and
Lee
,
J.
, 2007, “
Reliability-Centered Predictive Maintenance Scheduling for a Continuously Monitored System Subject to Degradation
,”
Reliab. Eng. Syst. Saf.
0951-8320,
92
, pp.
530
534
.
12.
Nakagawa
,
T.
, 1988, “
Sequential Imperfect Preventive Maintenance Policies
,”
IEEE Trans. Reliab.
0018-9529,
37
, pp.
295
298
.
13.
Lin
,
D.
,
Zhou
,
M. J.
, and
Yam
,
R. C. M.
, 2001, “
Sequential Imperfect Preventive Maintenance Models With Two Categories of Failure Modes
,”
Naval Research Logistics
,
48
, pp.
172
183
.
14.
Wu
,
S.
,
Gebraeel
,
N.
,
Lawley
,
M. A.
, and
Yih
,
Y.
, 2007, “
A Neural Network Integrated Decision Support System for Condition-Based Optimal Predictive Maintenance Policy
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
37
(
2
), pp.
226
236
.
15.
El-Ferik
,
S.
, and
Ben-Daya
,
M.
, 2006, “
Age-Based Hybrid Model for Imperfect Preventive Maintenance
,”
IIE Trans.
0740-817X,
38
, pp.
365
375
.
16.
Tan
,
C. M.
, and
Raghavan
,
N.
, 2008, “
A Framework to Practical Predictive Maintenance Modeling for Multi-State Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
93
, pp.
1138
1150
.
17.
Gebraeel
,
N.
, and
Lawley
,
M.
, 2008, “
A Neural Network Degradation Model for Computing and Updating Residual Life Distributions
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
1
), pp.
154
163
. 1545-5955
18.
Barlow
,
R. E.
, and
Hunter
,
L. C.
, 1960, “
Optimum Preventive Maintenance Policies
,”
Oper. Res.
0030-364X,
8
, pp.
90
100
.
19.
Lu
,
S.
,
Tu
,
Y. C.
, and
Lu
,
H.
, 2007, “
Predictive Condition-Based Maintenance for Continuously Deteriorating Systems
,”
Qual. Reliab. Eng. Int
0748-8017,
23
, pp.
71
81
.
20.
Connor
,
J. T.
,
Martin
,
R. D.
, and
Atlas
,
L. E.
, 1994, “
Recurrent Neural Networks and Robust Time Series Prediction
,”
IEEE Trans. Neural Netw.
1045-9227,
5
, pp.
240
253
.
21.
Lu
,
H.
,
Kolarik
,
W. J.
, and
Lu
,
S.
, 2001, “
Real-Time Performance Reliability Prediction
,”
IEEE Trans. Reliab.
0018-9529,
50
, pp.
353
357
.
You do not currently have access to this content.