This work focuses on application of the laser forming process to NiTi shape memory alloys. While all NiTi shape memory alloys exhibit both superelasticity and the shape memory effect, this study is restricted to a temperature range over which only the superelastic effect will be active. Specifically, this work addresses laser forming induced macroscopic bending deformations, postprocess residual stress distributions, and changes in microstructure. Like traditional ferrous alloys, the laser forming process may be used as a means for imparting desired permanent deformations in superelastic NiTi alloys. However, this process, when applied to a shape memory alloy also has great potential as a means for shape setting “memorized” geometric configurations while preserving optimal shape memory behavior. Laser forming may be used as a monolithic process, which imparts desired deformation while maintaining desired material behavior. Characterization of the residual stress field, plastic deformation, and phase transformation is carried out numerically and is then subsequently validated via experimental results.

1.
Fan
,
Y.
,
Yang
,
Z.
,
Cheng
,
P.
,
Egland
,
K.
, and
Yao
,
Y. L.
, 2005, “
Numerical and Experimental Investigation of Microstructure Evolution and Mechanical Behavior of Steel in Laser Forming
,”
ASME J. Manuf. Sci. Eng.
1087-1357, accepted.
2.
Li
,
W.
, and
Yao
,
Y. L.
, 2000, “
Numerical and Experimental Study of Strain Rate Effects in Laser Forming
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
3
), pp.
445
451
.
3.
Thomson
,
G.
, 2001, “
Material Property Changes Associated With Laser Forming of Mild Steel Components
,”
J. Mater. Process. Technol.
0924-0136,
118
(
1–3
), pp.
40
44
.
4.
Pelton
,
A.
,
Russell
,
S. M.
, and
DiCello
,
J.
, 2003, “
The Physical Metallurgy of Nitinol for Medical Applications
,”
JOM
1047-4838,
55
(
5
), pp.
33
37
.
5.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, England
.
6.
Cheng
,
J.
, and
Yao
,
Y. L.
, 2004, “
Process Design of Laser Forming for Three Dimensional Thin Plates
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
217
225
.
7.
Ostendorf
,
A.
,
Paschko
,
S.
,
von Busse
,
A.
,
Bunte
,
J.
,
Hustedt
,
M.
, and
Fargas
,
M.
, 2004, “
Laser-Based Induction of the Two-Way Memory Effect into Shape Memory Alloy Components
,”
Proc. SPIE
0277-786X,
5662
, pp.
586
592
.
8.
Chen
,
X. Y.
,
Lu
,
Y. F.
,
Ren
,
Z. M.
,
Zhang
,
L.
,
Wang
,
J. P.
, and
Liew
,
T.
, 2001,
Mater. Res. Soc. Symp. Proc.
0272-9172,
672
, pp.
O10.12.1
O10.12.6
.
9.
Zalalutdinov
,
M.
,
Aubin
,
K.
,
Reichenbach
,
R.
,
Zehnder
,
A.
,
Houston
,
B.
,
Parpia
,
J.
, and
Craighead
,
H.
, 2003, “
Shell-Type Micromechanical Actuator and Resonator
,”
Appl. Phys. Lett.
0003-6951,
83
(
18
), pp.
3815
3817
.
10.
Bellouard
,
Y.
,
Lehnert
,
T.
,
Clavel
,
R.
,
Sidler
,
T.
, and
Gotthardt
,
R.
, 2001, “
Laser Annealing of Shape Memory Alloys: A Versatile Tool for Developing Smart Micro-Devices
,”
J. Phys. IV
1155-4339,
11
(
8
), pp.
8571
8576
.
11.
Haferkamp
,
H.
,
Goede
,
M.
, and
Leester-Schaedel
,
M.
, 1999, “
Keeping the Shape Memory Properties of Miniaturized Components of NiTi-Alloys by Laser Machining
,”
Proc. SPIE
0277-786X,
3675
, pp.
267
274
.
12.
Nemat-Nasser
,
S.
, 2006, “
Superelastic and Cyclic Response on NiTi SMA at Various Strain Rates and Temperatures
,”
Mech. Mater.
0167-6636,
38
(
5–6
), pp.
463
474
.
13.
Miyazaki
,
S.
,
Kimura
,
S.
, and
Otsuka
,
K.
, 1988, “
Shape-Memory Effect and Pseudoelasticity Associated With the R-Phase Transition in Ti-50 at % Ni Single Crystals
,”
Philos. Mag. A
0141-8610,
57
(
3
), pp.
467
478
.
14.
Turner
,
T.
, 2001, “T
hermo-Mechanical Response of Shape Memory Alloy Hybrid Composites
,” Report No. NASA/TM-2001-210656.
15.
Jackson
,
C. M.
,
Wagner
,
H. J.
, and
Wasilewski
,
R. J.
, 1972, “
55-Nitinol—The Alloy With a Memory: Its Physical Metallurgy, Properties and Applications
,”
NASA
Publication No. SP5110.
16.
Cullity
,
B. D.
, 1959,
Elements of X-Ray Diffraction
,
Addison-Wesley
,
Reading, MA
.
17.
DeGiorgi
,
V. G.
, and
Saleem
,
H.
, 1999, “
A Review of a Few Shape Memory Alloy Constitutive Models
,”
Proc. SPIE
0277-786X,
3667
, pp.
730
737
.
18.
Tanaka
,
K.
,
Hayashi
,
T.
, and
Itoh
,
Y.
, 1992, “
Analysis of Thermo-Mechanical Behavior of Shape Memory Alloys
,”
Mech. Mater.
0167-6636,
13
, pp.
207
215
.
19.
Liang
,
C.
, and
Rogers
,
C. A.
, 1992, “
A Multi-Dimensional Constitutive Model for Shape Memory Alloys
,”
J. Eng. Math.
0022-0833,
26
, pp.
429
443
.
20.
Boyd
,
J.
, and
Lagoudas
,
D. C.
, 1996, “
A Thermodynamic Constitutive Model for Shape Memory Materials. Part I. The Monolithic Shape Memory Alloy
,”
Int. J. Plast.
0749-6419,
12
(
6
), pp.
805
842
.
21.
Qidwai
,
M. A.
, and
Lagoudas
,
D. C.
, 2000, “
Numerical Implementation of a Shape Memory Alloy Thermo-Mechanical Constitutive Model Using Return Mapping Algorithms
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
6
), pp.
1123
1168
.
22.
Rebelo
,
N.
,
Walker
,
N.
, and
Foadian
,
H.
, 2001, “
Simulation of Implantable Nitinol Stents
,”
ABAQUS User’s Conference
, pp.
1
14
.
23.
Birnbaum
,
A. J.
,
Cheng
,
P.
, and
Yao
,
Y. L.
, “
Effects of Clamping on Laser Forming Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357, accepted.
24.
Fan
,
Y.
,
Cheng
,
P.
,
Yao
,
Y. L.
,
Yang
,
Z.
, and
Egland
,
K.
, 2005, “
Effects of Phase Transformations on Laser Forming of Ti-6Al-4V Alloy
,”
J. Appl. Phys.
0021-8979,
98
, p.
013518
.
25.
Brinson
,
C.
,
Schmidt
,
I.
, and
Lammering
,
R.
, 2004, “
Stress-Induced Transformation Behavior of a Polycrystalline NiTi Shape Memory Alloy: Micro and Macromechanical Investigations Via In Situ Optical Microscopy
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
1549
1571
.
26.
Bao
,
J.
, and
Yao
,
Y. L.
, 2001, “
Analysis and Prediction of Edge Effects in Laser Bending
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
53
61
.
You do not currently have access to this content.