Part I of this work presents a combined one-dimensional/three-dimensional approach for obtaining a unified model for the dynamics of micro- and macro-drills. To increase the numerical efficiency of the model, portions of the drill with circular cross-section (shank, extension, and tapered sections) are modeled using one-dimensional beam models without compromising model accuracy. A three-dimensional model is used for an accurate representation of the fluted section, considering the actual geometry with the pretwisted shape and axially varying (nonaxisymmetric) cross-section. The actual cross-section of the drills is incorporated to the model through a polynomial mapping while the pretwist effect is captured by defining a rotating reference frame. The boundary-value problem for both one- and three-dimensional models are derived using a variational approach, based on the extended Hamilton’s principle, and are subsequently solved by applying the spectral-Tchebychev technique. A component-mode synthesis is used for connecting the individual sections to obtain the dynamic model for the entire drill. Convergence of the model is studied by varying the number of polynomials for each section. The experimental validation of the model is included in Part II for both macro- and micro-drills. Also included in Part II is an analysis of drill dynamics for varying drill-geometry parameters and axial (thrust) force.

1.
Bayly
,
P. V.
,
Metzler
,
S. A.
,
Schaut
,
A. J.
, and
Young
,
K. A.
, 2001, “
Theory of Torsional Chatter in Twist Drills: Model, Stability Analysis and Composition to Test
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
552
561
.
2.
Gupta
,
K.
,
Ozdoganlar
,
O. B.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2003, “
Modeling and Prediction of Hole Profile in Drilling, Part 2: Modeling Hole Profile
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
14
20
.
3.
Roukema
,
J. C.
, and
Altintas
,
Y.
, 2006, “
Time Domain Simulation of Torsional-Axial Vibrations in Drilling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
2073
2085
.
4.
Voronov
,
S. A.
,
Gouskov
,
A. M.
,
Kvashnin
,
A. S.
,
Butcher
,
E. A.
, and
Sinha
,
S. C.
, 2007, “
Influence of Torsional Motion on the Axial Vibrations of a Drilling Tool
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
, pp.
58
64
.
5.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2009, “
Coupled Torsional-Axial Vibrations of Micro- and Macro-Drills
,”
Trans. NAMRI/SME
1047-3025,
37
, pp.
57
65
.
6.
Magrab
,
E. B.
, and
Gilsinn
,
D. E.
, 1984, “
Buckling Loads and Natural Frequencies of Drill Bits and Fluted Cutters
,”
ASME J. Eng. Ind.
0022-0817,
106
(
3
), pp.
196
204
.
7.
Tekinalp
,
O.
, and
Ulsoy
,
A. G.
, 1989, “
Modeling and Finite Element Analysis of Drill Bit Vibrations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
111
(
2
), pp.
148
155
.
8.
Rincon
,
D. M.
, and
Ulsoy
,
A. G.
, 1995, “
Complex Geometry, Rotary Inertia and Gyroscopic Moment Effects on Drill Vibrations
,”
J. Sound Vib.
0022-460X,
188
(
5
), pp.
701
715
.
9.
Gupta
,
K.
,
Ozdoganlar
,
O. B.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2003, “
Modeling and Prediction of Hole Profile in Drilling, Part 1: Modeling Drill Dynamics in the Presence of Drill Alignment Errors
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
6
13
.
10.
Gong
,
Y.
,
Lin
,
C.
, and
Ehmann
,
K. F.
, 2005, “
Dynamics of Initial Penetration in Drilling: Part 2—Motion Models for Drill Skidding and Wandering With Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
289
297
.
11.
Huang
,
B.
, and
Kuang
,
J.
, 2007, “
The Parametric Resonance Instability in a Drilling Process
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
958
964
.
12.
Gong
,
Y.
,
Ehmann
,
K. F.
, and
Lin
,
C.
, 2003, “
Analysis of Dynamic Characteristics of Micro-Drills
,”
J. Mater. Process. Technol.
0924-0136,
141
, pp.
16
28
.
13.
Huang
,
B.
, 2004, “
The Drilling Vibration Behavior of a Twisted Microdrill
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
719
726
.
14.
Chu
,
C.
, 1951, “
The Effect of Initial Twist on the Torsional Rigidity of Thin Prismatical Bars and Tubular Members
,”
Proceedings of the First U.S. National Congress of Applied Mechanics
, pp.
265
269
.
15.
Rosen
,
A.
, 1980, “
The Effect of Initial Twist on the Torsional Rigidity of Beams-Another Point of View
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
389
392
.
16.
Hodges
,
D. G.
, 1980, “
Torsion of Pretwisted Beams Due to Axial Loading
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
393
397
.
17.
Rosen
,
A.
, 1983, “
Theoretical and Experimental Investigation of the Nonlinear Torsion and Extension of Initially Twisted Bars
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
321
326
.
18.
Balhaddad
,
A. S.
, and
Onipede
,
D.
, 1998, “
Three-Dimensional Free Vibration of Pretwisted Beams
,”
AIAA J.
0001-1452,
36
(
8
), pp.
1524
1528
.
19.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
, 2005,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier Butterworth-Heinemann
,
Burlington
.
20.
Yagci
,
B.
,
Filiz
,
S.
,
Romero
,
L. A.
, and
Ozdoganlar
,
O. B.
, 2009, “
A Spectral-Tchebychev Technique for Solving Linear and Non-Linear Beam Equations
,”
J. Sound Vib.
0022-460X,
321
(
1–2
), pp.
375
404
.
21.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2008, “
Experimental Modal Analysis of Micro-Drills
,”
Trans. NAMRI/SME
1047-3025,
36
, pp.
185
192
.
22.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2008, “
Micro-Endmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031119
.
23.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2008, “
Micro-Endmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part II: Model Validation and Application
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031120
.
24.
Gottlieb
,
D.
, and
Orszag
,
S. A.
, 1977,
Numerical Analysis of Spectral Methods, Theory and Applications
,
SIAM-CBMS
,
Philadelphia, PA
.
25.
Trefethen
,
L. N.
, 2000,
Spectral Methods in MATLAB
,
SIAM-CBMS
,
Philadelphia, PA
.
26.
Boyd
,
P. J.
, 2001,
Chebyshev and Fourier Spectral Methods
, 2nd ed.,
Dover
,
New York
.
27.
Becker
,
E. B.
,
Carey
,
G. F.
, and
Oden
,
J. T.
, 1986,
Finite Elements Volume 1—An Introduction
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Cowper
,
G. R.
, 1966, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
335
340
.
30.
Rao
,
S. S.
, 2007,
Vibration of Continuous Systems
,
Wiley
,
Hoboken, NJ
.
31.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.