In Part II of this work, an experimental study is conducted to validate the three-dimensional (3D-ST) drill dynamics model. Modal experiments on macro- and micro-drills are performed by exciting the drills with small piezoelectric elements directly attached to the drill body. The response measurements are conducted in a noncontact manner using a laser Doppler vibrometer system. In addition, to perform the comparison on a complete frequency response function, rather than on only natural frequencies and mode shapes, an impact hammer test with a miniature hammer and a small accelerometer was conducted on one of the macro-drills. In the validation study, five macro-drills and three micro-drills with different geometric parameters are used. It was concluded that the 3D-ST model can capture both bending and torsional-axial natural frequencies and mode shapes of macro-drills (up to 15 kHz) and micro-drills (up to 90 kHz) with better than 4.5% accuracy, and with an average absolute error of 1.5%. For each case, the natural frequencies are also compared with those from detailed solid-element finite-elements (FEs) model to gain further insight about the 3D-ST model. The natural frequencies from the FE and 3D-ST models are seen to match with better than 1.5% accuracy. Subsequently, the effects of tool geometry (diameter, aspect ratio, helix angle, and web-taper) and axial (thrust) force on dynamics of macro- and micro-drills are analyzed.

1.
Roukema
,
J. C.
, and
Altintas
,
Y.
, 2006, “
Time Domain Simulation of Torsional-Axial Vibrations in Drilling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
2073
2085
.
2.
Huang
,
B.
, 2004, “
The Drilling Vibration Behavior of a Twisted Microdrill
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
719
726
.
3.
Lee
,
S. W.
,
Mayor
,
R.
, and
Ni
,
J.
, 2006, “
Dynamic Analysis of a Mesoscale Machine Tool
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
194
203
.
4.
Mascardelli
,
B. A.
,
Park
,
S. S.
, and
Freiheit
,
T.
, 2006, “
Substructure Coupling of Micro-End Mills
,”
Proceedings of IMECE2006
, Chicago, IL (13129), pp.
145
150
.
5.
Maia
,
N.
, and
Silva
,
J.
, 1997,
Theoretical and Experimental Modal Analysis
,
Research Studies Press
,
Baldock, Hertfordshire, England
.
6.
Ewins
,
D. J.
, 2000,
Modal Testing Theory, Practice and Application
,
Research Studies Press
,
Baldock, Hertfordshire, England
.
7.
Ozdoganlar
,
O. B.
,
Hansche
,
B. D.
, and
Carne
,
T. G.
, 2005, “
Experimental Modal Analysis for Microelectromechanical Systems
,”
Exp. Mech.
0014-4851,
45
(
6
), pp.
498
506
.
8.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2008, “
Experimental Modal Analysis of Micro-Drills
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
36
, pp.
185
192
.
9.
Chou
,
Y. F.
, and
Wang
,
L. C.
, 2001, “
On the Modal Testing of Microstructures: Its Theoretical Approach and Experimental Setup
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
104
109
.
10.
Zhang
,
P. Q.
,
Tang
,
X. L.
,
Shan
,
B. X.
,
Brandon
,
J. A.
, and
Kwan
,
A. S. K.
, 1998, “
Analytical and Experimental Modal Analysis for Operational Validation and Calibration of a Miniature Silicon Sensor
,”
J. Sound Vib.
0022-460X,
214
(
5
), pp.
903
913
.
11.
Polla
,
D. L.
, and
Francis
,
L. F.
, 1998, “
Processing and Characterization of Piezoelectric Materials and Integration Into Microelectromechanical Systems
,”
Annu. Rev. Mater. Sci.
0084-6600,
28
, pp.
563
597
.
12.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2008, “
Micro-Endmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part II: Model Validation and Application
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031120
.
13.
Lawrence
,
E. M.
,
Rembe
,
C.
,
Boedecker
,
S.
, and
Zhang
,
H.
, 2006, “
The Ultra Fine Dynamics of MEMS as Revealed by the Polytec Micro System Analyzer
,”
Proc. SPIE
0277-786X,
6111
, p.
61110L
.
14.
Erturk
,
A.
,
Ozguven
,
H. N.
, and
Budak
,
E.
, 2006, “
Analytical Modeling of Spindle-Tool Dynamics on Machine Tools Using Timoshenko Beam Model and Receptance Coupling for the Prediction of Tool Point FRF
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
1901
1912
.
15.
Jackson
,
M. E.
,
Hyde
,
L. J.
,
Robinson
,
G. M.
, and
Ahmet
,
W.
, 2006, “
Dynamic Response of a Tetrahedral Nanomachining Machine Tool Structure
,”
International Journal of Nanomanufacturing
,
1
(
1
), pp.
26
46
.
16.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
, 2005, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
781
790
.
17.
Duncan
,
G. S.
,
Tummond
,
M. F.
, and
Schmitz
,
T. L.
, 2005, “
An Investigation of the Dynamic Absorber Effect in High-Speed Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
497
507
.
18.
Filiz
,
S.
,
Cheng
,
C.
,
Powell
,
K. B.
,
Schmitz
,
T. L.
, and
Ozdoganlar
,
O. B.
, 2009, “
An Improved Tool-Holder Model for RCSA Tool-Point Frequency Response Prediction
,”
Precis. Eng.
0141-6359,
33
, pp.
26
36
.
19.
Schmitz
,
T. L.
,
Davies
,
M. A.
,
Medicus
,
K.
, and
Snyder
,
J.
, 2001, “
Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis
,”
CIRP Ann.
0007-8506,
50
(
1
), pp.
263
268
.
20.
Montalvão
,
J. M.
,
Silva
,
E.
, and
Araujo Gomes
,
A. J. M.
, 1990, “
Experimental Dynamic Analysis of Cracked Free-Free Beams
,”
Exp. Mech.
0014-4851,
30
(
1
), pp.
20
25
.
21.
Jun
,
M. B. G.
,
Liu
,
X.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
901
912
.
22.
Jun
,
M. B.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
, 2004, “
The Effects of End Mill Alignment Errors on Vibrations at High Spindle Speeds
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
32
, pp.
9
16
.
23.
Gupta
,
K.
,
Ozdoganlar
,
O. B.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2003, “
Modeling and Prediction of Hole Profile in Drilling, Part I: Modeling Drill Dynamics in the Presence of Drill Alignment Errors
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
6
13
.
24.
Gong
,
Y.
,
Lin
,
C.
, and
Ehmann
,
K. F.
, 2005, “
Dynamics of Initial Penetration in Drilling: Part 2—Motion Models for Drill Skidding and Wandering With Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
289
297
.
25.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2008, “
Micro-Endmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031119
.
26.
Anliker
,
M.
, and
Troesch
,
B. A.
, 1963, “
Lateral Vibrations of Pretwisted Rods With Various Boundary Conditions
,”
Z. Angew. Math. Phys.
0044-2275,
14
, pp.
218
236
.
27.
Den Hartog
,
J. P.
, 1952,
Advanced Strength of Materials
,
McGraw-Hill
,
New York
.
28.
Krenk
,
S.
, 1983, “
A Linear Theory of Pretwisted Elastic Beams
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
50
, pp.
137
142
.
29.
Rosen
,
A.
, 1991, “
Structural and Dynamic Behavior of Pretwisted Rods and Beams
,”
Appl. Mech. Rev.
0003-6900,
44
(
12
), pp.
483
515
.
30.
Rosen
,
A.
, 1980, “
The Effect of Initial Twist on the Torsional Rigidity of Beams—Another Point of View
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
389
392
.
31.
Hodges
,
D. G.
, 1980, “
Torsion of Pretwisted Beams Due to Axial Loading
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
393
397
.
32.
Rosen
,
A.
, 1983, “
Theoretical and Experimental Investigation of the Nonlinear Torsion and Extension of Initially Twisted Bars
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
321
326
.
33.
Liu
,
K. C.
,
Friend
,
J.
, and
Yeo
,
L.
, 2009, “
The Axial-Torsional Vibrations of Pretwisted Beams
,”
J. Sound Vib.
0022-460X,
321
, pp.
115
136
.
You do not currently have access to this content.