With the increased application of micromachining, including micromilling and microdrilling, the need to develop accurate models for machining at the microscale has been recognized. In particular, the crystallographic effects that are generally neglected in the macroscale cutting models must be incorporated into the micromachining models. Diamond turning and mechanical nanomanufacturing techniques also require an understanding of crystallographic effects during material removal. This work presents a rate-sensitive plasticity-based machining (RSPM) model that is used to determine the specific energies (and thus forces) for orthogonal cutting of face-centered cubic (fcc) single-crystals. The RSPM model uses kinematics and geometry of orthogonal cutting for an ideally sharp cutting edge. The total power is expressed in terms of the plastic power, which is spent for shearing the material within a finite shear zone, and the friction power, which is spent for overcoming the friction at the rake face. In calculating the shearing power, rate-sensitive plastic behavior of fcc metals is considered. In addition, realistic effects of lattice rotation and strain hardening are included in the model. Subsequently, the total power is minimized within the space of geometrically allowable shear angles to determine the shear angle solution, and associated cutting and thrust specific energies, as a function of cutting plane orientation, cutting direction (with respect to the crystal orientation), rake angle, and the coefficient of friction. The calibration procedure for and the experimental validation of the model are provided in Part II.

References

1.
Benavides
,
G. L.
,
Adams
,
D. P.
, and
Yang
,
P.
, 2001, “
Meso-Machining Capabilities
,”
Sandia National Laboratories
, Albuquerque, New Mexico 87185, Technical Report No. SAND2001-1708.
2.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
, 2004, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
J. Manuf. Sci. Eng.
,
126
, pp.
666
678
.
3.
Filiz
,
S.
,
Conley
,
C.
,
Wasserman
,
M.
, and
Ozdoganlar
,
O. B.
, 2007, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
1088
1100
.
4.
Xie
,
L.
,
Brownridge
,
S. D.
,
Ozdoganlar
,
O. B.
, and
Weiss
,
L. E.
, 2006, “
The Viability of Micromilling for Manufacturing Mechanical Attachment Components for Medical Applications
,”
Trans. NAMRI/SME
,
34
, pp.
445
452
.
5.
Koenig
,
W.
, and
Spenrath
,
N.
, 1991, “
Influence of the Crystallographic Structure of the Substrate Material on Surface Quality and Cutting Forces in Micromachining
,”
Proceedings of the International Precision Engineering Seminar
, pp.
141
151
.
6.
Clarebrough
,
L. M.
, and
Ogilvie
,
G. J.
, 1950, “
Microstructure by Machining
,” Machining Theory and Practice, ASM, pp.
110
121
.
7.
Turkovich
,
B.
von
and
Black
,
J. T.
, 1970, “
Micro-Machining of Copper and Aluminum Crystals
,”
ASME J. Eng. Ind.
,
92
, pp.
130
134
.
8.
Black
,
J. T.
, 1969, “
Plastic Deformation in Ultramicrotomy of Copper and Aluminum
,” Ph.D. thesis, University of Illinois, Urbana-Champaign, IL.
9.
Black
,
J. T.
, 1971, “
On the Fundamental Mechanism of Large Strain Plastic Deformation
,”
ASME J. Eng. Ind.
,
93
, pp.
507
526
.
10.
Black
,
J. T.
, 1972, “
Shear Front-Lamella Structure in Large Strain Plastic Deformation Processes
,”
ASME J. Eng. Ind.
,
94
, pp.
307
316
.
11.
Ramalingam
,
S.
, and
Hazra
,
J.
, 1973, “
Dynamic Shear Stress-Analysis of Single Crystal Machining Studies
,”
ASME J. Eng. Ind.
,
95
, pp.
939
944
.
12.
Willams
,
J.
, and
Gane
,
N.
, 1977, “
Some Observations on the Flow Stress of Metals During Metal Cutting
,”
Wear
,
42
, pp.
341
353
.
13.
Ueda
,
K.
,
Iwata
,
K.
, and
Nakajama
,
K.
, 1980, “
Chip Formation Mechanism in Single Crystal Cutting β-brass
,”
CIRP Ann.-Manuf. Technol.
,
29
(
1
), pp.
41
46
.
14.
Williams
,
J.
, and
Horne
,
J.
, 1982, “
Crystallographic Effects in Metal Cutting
,”
J. Mater. Sci.
,
17
, pp.
2618
2624
.
15.
Cohen
,
P. H.
, 1982, “
The Orthogonal In-Situ Machining of Single and Polycrystalline Aluminum and Copper
,” Ph.D. thesis, Ohio State University, Columbus, OH.
16.
Sato
,
M.
,
Kato
,
Y.
, and
Tsutiya
,
K.
, 1979, “
Effects of Crystal Orientation on the Flow Mechanism in Cutting Aluminum Single Crystal
,”
Trans. Jpn Inst. Met.
,
20
, pp.
414
422
.
17.
Sato
,
M.
,
Kato
,
Y.
,
Tsutiya
,
K.
, and
Aoki
,
S.
, 1981, “
Effects of Crystal Orientation on the Cutting Mechanism of Aluminum Single Crystal
,”
Bull. Jpn. Soc. Mech. Eng.
,
24
, pp.
1864
1870
.
18.
Sato
,
M.
,
Kato
,
Y.
,
Aoki
,
S.
, and
Ikoma
,
A.
, 1983, “
Effects of Crystal Orientation on the Cutting Mechanism of Aluminum Single Crystal
,”
Bull. Jpn. Soc. Mech. Eng.
,
26
(
215
), pp.
890
896
.
19.
Sato
,
M.
,
Yamazaki
,
T.
,
Shimizu
,
Y.
, and
Takabayashi
,
T.
, 1991, “
A Study on the Microcutting of Aluminum Single Crystals
,”
JSME Int. J., Ser. C
,
34
(
4
), pp.
540
545
.
20.
Moriwaki
,
T.
,
Okuda
,
K.
, and
Shen
,
J. G.
, 1993, “
Study on Ultraprecision Orthogonal Microdiamond Cutting of Single-Crystal Copper
,”
JSME Int. J., Ser. C
,
36
, pp.
400
406
.
21.
To
,
S.
,
Lee
,
W. B.
, and
Chan
,
C. Y.
, 1997, “
Ultraprecision Diamond Turning of Aluminum Single Crystals
,”
J. Mater. Process. Technol.
,
63
, pp.
157
162
.
22.
Lee
,
W.
,
To
,
S.
, and
Cheung
,
C. F.
, 2000, “
Effect of Crystallographic Orientation in Diamond Turning of Copper Single Crystals
,”
Scr. Mater.
,
42
, pp.
937
945
.
23.
Zhou
,
M.
, and
Ngoi
,
B. K. A.
, 2001, “
Effect of Tool and Workpiece Anisotropy on Microcutting Processes
,”
Proc. Inst. Mech. Eng., Part B
,
215
, pp.
13
19
.
24.
Min
,
S.
,
Lee
,
D.
, De
Grave
,
A.
, De Oliveira
Valente
,
C. M.
,
Lin
,
J.
, and
Dornfeld
,
D.
, 2006, “
Surface and Edge Quality Variation in Precision Machining of Single Crystal and Polycrystalline Materials
,”
Proc. Inst. Mech. Eng., Part B
,
220
, pp.
479
287
.
25.
Lawson
,
B. L.
,
Kota
,
N.
, and
Ozdoganlar
,
O. B.
, 2008, “
Effects of Crystallographic Anisotropy on Orthogonal Micromachining of Single-Crystal Aluminum
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031116
.
26.
Yuan
,
Z. J.
,
Lee
,
W. B.
,
Yao
,
Y. X.
, and
Zhou
,
M.
, 1994, “
Effect of Crystallographic Orientation on Cutting Forces and Surface Quality in Diamond Cutting of Single Crystal
,”
CIRP Ann.-Manuf. Technol.
,
43
(
1
), pp.
39
42
.
27.
Shirakashi
,
T.
,
Yoshino
,
M.
, and
Kurashima
,
H.
, 1991, “
Study on Cutting Mechanism of Single Crystal Based on Simple Shear Plane Model
,”
Int. J. Jpn. Soc. Precis. Eng.
,
25
(
2
), pp.
96
97
.
28.
Lee
,
W. B.
, and
Zhou
,
M.
, 1993, “
A Theoretical Analysis of the Effect of Crystallographic Orientation on Chip Formation in Micromachining
,”
Int. J. Mach. Tools Manuf.
,
33
(
3
), pp.
439
447
.
29.
Hill
,
R.
, 1950,
Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford
.
30.
Lee
,
W. B.
,
Cheung
,
C. F.
, and
To
,
S.
, 2002, “
A Microplasticity Analysis of Micro-Cutting Force Variation in Ultra-Precision Diamond Turning
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
170
177
.
31.
Kota
,
N.
, and
Ozdoganlar
,
O.
, 2010, “
A Model-Based Analysis of Orthogonal Cutting for Single-Crystal Fcc Metals Including Crystallographic Anisotropy
,”
Mach. Sci. Technol.
14
(
1
), pp.
102
127
.
32.
Oxley
,
P. L. B.
,
The Mechanics of Machining an Analytical Approach to Assessing Machinability
,
Halsted Press
,
New York
, 1989.
33.
Payton
,
N. L
, 2009, “
A Basic Correction to the Orthogonal Metal Cutting Models
,”
Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference
, pp.
455
465
.
34.
Merchant
,
M. E.
, 1945, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 chip
,”
J. Appl. Phys.
,
16
, pp.
267
275
.
35.
Payton
,
N. L.
, and
Black
,
J. T.
, 2000, “
Low Speed Orthogonal Machining of Copper With a Hardness Gradient
,”
Trans. NAMRI/SME
,
28
, pp.
243
250
.
36.
Altintas
,
Y.
, 2000,
Manufacturing; Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC, Design
Cambridge University Press
,
New York
.
37.
Bishop
,
J.
, and
Hill
,
R.
, 1951, “
A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
Philos. Mag.
,
42
, pp.
414
427
.
38.
Kocks
,
U. F.
,
Tome
,
C. N.
, and
Wenk
,
H. R.
, eds., 1998,
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,
Cambridge University Press
,
New York
.
39.
Kota
,
N.
, and
Ozdoganlar
,
O.
, 2008, “
A Simplified Model for Orthogonal Micromachining of fcc single-crystal materials
,”
Trans. NAMRI/SME
,
36
, pp.
193
200
.
40.
Jog
,
C. S.
, 2002,
Foundations; and Applications of Mechanics: Continuum Mechanics, Volume I,
Narosa
, New Delhi.
41.
Dunne
,
F.
, and
Petrinic
,
N.
, 2005,
Introduction to Computational Plasticity
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.