Forming modern advanced high strength steels poses challenges that were not of real importance in the previous decades. These challenges are the result of the steels’ complex microstructures and hardening behaviors, and the problems directly related to the high strength of the material, especially springback. New methodologies and processes are required to overcome these challenges and to produce formed panels via optimized forming processes. This paper reviews the key developments in the fields of numerical simulation of sheet forming processes, the material models required to obtain accurate results, and the advanced stamping presses and approaches for shaping modern steel sheet materials into desired shapes. Present research trends are summarized, which point to further developmental possibilities. Within the next decade, it is predicted that numerical simulations will become an integral part of the developmental and optimization process for stamping tools and forming processes. In addition to predicting the strains in the formed panel and its shape after trimming and springback, the simulation technology will also determine the optimum displacement path of the forming tool elements to realize minimum springback. Toward those goals, digital servo presses are expected to become an integral element of the overall forming technology.

References

1.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
, 2010, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
, pp.
2103
2118
.
2.
Raabe
,
D.
,
Roters
,
F.
,
Barlat
,
F.
, and
Chen
,
L. Q.
, 2004,
Continuum Scale Simulations of Engineering Materials—Fundamentals—Microstructures—Process Applications
,
Wiley-VCH Verlag GmbH Berlin
,
Germany
.
3.
Fischer
,
F. D.
,
Sun
,
Q.-P.
, and
Tanaka
,
K.
, 1996, “
Transformation-Induced Plasticity (TRIP)
,”
Appl. Mech. Rev.
,
49
, pp.
317
364
.
4.
Thomason
,
P. F.
, 1990,
Ductile Fracture of Metals
,
Pergamon Press Oxford
,
UK
.
5.
Kassner
,
M. E.
, and
Hayes
,
T.A.
, 2003, “
Creep Cavitation in Metal
,”
Int. J. Plast.
,
19
, pp.
1715
1864
.
6.
Hosford
,
W. F.
, and
Caddell
,
R. M.
, 1983,
Metal Forming-Mechanics and Metallurgy
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
7.
Barlat
,
F.
,
Cazacu
,
O.
,
Życzowski
,
M.
,
Banabic
,
D.
, and
Yoon
,
J. W.
, 2004, “
Yield Surface Plasticity and Anisotropy
,”
Continuum Scale Simulation of Engineering Materials—Fundamentals—Microstructures—Process Applications
,
D.
Raabe
,
F.
Roters
,
F.
Barlat
, and
L. Q.
Chen
, eds.,
Wiley-VCH Verlag GmbH Berlin
,
Germany
, pp.
145
177
.
8.
Yu
,
M. H.
, 2002, “
Advances in Strength Theories for Materials Under Complex Stress State in the 20th Century
,”
Appl. Mech. Rev.
,
55
, pp.
169
218
.
9.
Bishop
,
J. W. F.
, and
Hill
,
R.
, 1951, “
A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
Philos. Mag.
,
42
, pp.
414
427
.
10.
Hershey
,
A. V.
, 1954, “
The Plasticity of an Isotropic Aggregate of Anisotropic Face Centred Cubic Crystals
,”
J. Appl. Mech.
,
21
, pp.
241
249
.
11.
Hosford
,
W. F.
, 1993,
The Mechanics of Crystals and Polycrystals
,
Science Publications Oxford
,
United Kingdom
.
12.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
, 1993, “
A general anisotropic yield criterion using bounds and a transformation weighting tensor
,”
J. Mech. Phys. Solids
,
41
, pp.
1859
1886
.
13.
Bron
,
F.
, and
Besson
,
J.
, 2004, “
A Yield Function for Anisotropic Materials—Application to Aluminum Alloys
,”
Int. J. Plast.
,
20
, pp.
937
963
.
14.
Boehler
,
J. P.
, 1978, “
Lois de Comportement anisotropes des milieux continus
,”
J. Mécanique
,
17
, pp.
153
190
.
15.
Barlat
,
F.
,
Aretz
,
H.
,
Yoon
,
J. W.
,
Karabin
,
M. E.
,
Brem
,
J. C.
, and
Dick
,
R. E.
, 2005, “
Linear Transformation-Based Anisotropic Yield Functions
,”
Int. J. Plast.
,
21
, pp.
1009
1039
.
16.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S.-H.
, and
Chu
,
E.
, 2003, “
Plane Stress Yield Function for Aluminum Alloy Sheets–Part I: Theory
,”
Int. J. Plast.
,
19
, pp.
1297
1319
.
17.
Yoon
,
J. W.
,
Barlat
,
F.
,
Dick
,
R. E.
,
Chung
,
K.
, and
Kang
,
T. J.
, 2004, “
Plane Stress Yield Function for Aluminum Alloy Sheets–Part II: FE Formulation and Its Implementation
,”
Int. J. Plast.
,
20
, pp.
495
522
.
18.
Yoon
,
J. W.
,
Barlat
,
F.
,
Dick
,
R. E.
, and
Karabin
,
M. E.
, 2006, “
Prediction of Six or Eight Ears in a Drawn Cup Based on a New Anisotropic Yield Function
,”
Int. J. Plast.
,
22
, pp.
174
193
.
19.
Yoon
,
J. W.
, and
Barlat
,
F.
, 2006, “
Modeling and Simulation of the Forming of Aluminum Sheet Alloys
,”
ASM Handbook, Volume 14B, Metalworking: Sheet Forming
,
ASM International Materials Park
,
OH
, pp.
792
826
.
20.
Soare
,
S.
,
Yoon
,
J. W.
, and
Cazacu
,
O.
, 2008, “
On the Use of Homogeneous Polynomials to Develop Anisotropic Yield Functions With Applications to Sheet Forming
,”
Int. J. Plast.
,
24
, pp.
915
944
.
21.
Soare
,
S.
, and
Banabic
,
D.
, 2008,
Proceeding 11th International Esaform Conference on Material Forming
, Lyon (France), ESAFORM2008 CDROM,
Springer
,
Berlin
, pp.
174
177
.
22.
Hosford
,
W. F.
, and
Allen
,
T. J.
, 1973, “
Twinning and Directional Slip as a Cause for Strength Differential Effect
,”
Metall. Trans.
,
4
, pp.
1424
1425
.
23.
Cazacu
,
O.
, and
Barlat
,
F.
, 2004, “
A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals
,”
Int. J. Plast.
,
20
, pp.
2027
2045
.
24.
Cazacu
,
O.
,
Plunkett
,
B.
, and
Barlat
,
F.
, 2005, “
Orthotropic Yield Criterion for Mg Alloy Sheets
,”
Proceedings 8th Conference European Scientific Association for Material Forming
,
D.
Banabic
, ed.,
The Publishing House of the Romanian Academy Bucharest
,
Cluj-Napoca, Romania
, pp.
379
382
.
25.
Cazacu
,
O.
,
Plunkett
,
B.
, and
Barlat
,
F.
, 2006, “
Orthotropic Yield Criterion for Hexagonal Close Packed Metals
,”
Int. J. Plast.
,
22
, pp.
1171
1194
.
26.
Hill
,
R.
, 1987, “
Constitutive Dual Potential in Classical Plasticity
,”
J. Mech. Phys. Solids
,
35
, pp.
23
33
.
27.
Arminjon
,
M.
, and
Bacroix
,
B.
, 1991, “
On Plastic Potentials for Anisotropic Metals and Their Derivation From the Texture Function
,”
Acta Mech.
,
88
, pp.
219
243
.
28.
Arminjon
,
M.
,
Imbault
,
D.
,
Bacroix
,
B.
, and
Raphanel
,
J. L.
, 1994, “
A Fourth-Order Plastic Potential for Anisotropic Metals and Its Analytical Calculation From the Texture Function
,”
Acta Mech.
,
107
, pp.
33
51
.
29.
Van Houtte
,
P.
, 1994, “
Application of Plastic Potentials to Strain Rate Sensitive and Insensitive Anisotropic Materials
,”
Int. J. Plast.
,
10
, pp.
719
748
.
30.
Van Houtte
,
P.
, 2001, “
Yield Loci Based on Crystallographic Texture
,”
Handbook of Materials Behavior Models
,
J.
Lemaitre
, ed.,
Academic
,
San Diego, CA
, pp.
137
154
.
31.
Barlat
,
F.
, and
Chung
,
K.
, 1993, “
Anisotropic Potentials for Plastically Deforming Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
1
, pp.
403
416
.
32.
Barlat
,
F.
,
Chung
,
K.
, and
Richmond
,
O.
, 1993, “
Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations
,”
Int. J. Plast.
,
9
, pp.
51
63
.
33.
Barlat
,
F.
,
Lege
,
D. J.
, and
Brem
,
J. C.
, 1991, “
A Six-Component Yield Function for Anisotropic Materials
,”
Int. J. Plast.
,
7
, pp.
693
712
.
34.
Kim
,
D.
,
Barlat
,
F.
,
Bouvier
,
S.
,
Rabahallah
,
T.
,
Balan
,
T. M.
, and
Chung
,
K.
, 2007, “
Non-Quadratic Anisotropic Potential Based on Linear Transformation of Plastic Strain Rate
,”
Int. J. Plast.
,
23
, pp.
1380
1399
.
35.
Kocks
,
U. F.
, 1976, “
Laws of Work-Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
,
98
, pp.
76
83
.
36.
Mecking
,
H.
, 1976, “
Deformation Behavior in F.C.C. Metals and Alloys
,”
Mater. Sci. Eng.
,
25
, pp.
165
170
.
37.
Lege
,
D. J.
,
Barlat
,
F.
, and
Brem
,
J. C.
, 1989, “
Characterization and Modeling of the Mechanical Behavior and Formability of 2008 Autobody Sheet
,”
Int. J. Mech. Sci.
,
31
, pp.
549
563
.
38.
Salem
,
A. A.
,
Kalidindi
,
S. R.
, and
Semiatin
,
S. L.
, 2005, “
Strain Hardening Due to Deformation Twinning in a-Titanium: Constitutive Relations and Crystal-Plasticity Modelling
,”
Acta Mater.
,
53
, pp.
3495
3502
.
39.
Teodosiu
,
C.
, and
Hu
,
Z.
, 1998, “
Microstructure in the Continuum Modeling of Plastic Anisotropy
,”
Proceedings of Risø International Symposium on Material Science: Modelling of Structure and Mechanics of Materials from Microscale to products
,
J. V.
Cartensen
,
T.
Leffers
,
T.
Lorentzen
,
O. B.
Pedersen
,
B. F.
Sørensen
, and
G.
Winther
, eds.,
Risø National Laboratory Roskilde
, pp.
149
168
.
40.
Yoshida
,
F.
,
Uemori
,
K.
, and
Fujiwara
,
K.
, 2002, “
Elastic-Plastic Behaviour of Steel Sheets Under In-Plane Cyclic Tension-Compression at Large Strain
,”
Int. J. Plast.
,
18
, pp.
633
659
.
41.
Peeters
,
B.
,
Seefeldt
,
M.
,
Teodosiu
,
C.
,
Kalindindi
,
S. R.
,
Van Houtte
,
P.
, and
Aernould
,
E.
, 2001, “
Work Hardening/Softening Behaviour of b.c.c. Polycrystals During Changing Strain Path: II. An Integrated Model Based on Substructure and Texture Evolution, and Its Predictions of the Stress–Strain Behaviour of an IF steel During Two-Stage Strain Paths
,”
Acta Mater.
,
49
, pp.
1607
1619
.
42.
Barlat
,
F.
,
Gracio
,
J. J.
,
Lee
,
M. G.
,
Rauch
,
E. F.
, and
Vincze
,
G.
, 2011, “
An Alternative to Kinematic Hardening in Classical Plasticity
,”
Int. J. Plast.
,
27
, pp.
1309
1327
.
43.
Ha
,
J.-J.
,
Lee
,
J.-W.
,
Kuwabara
,
T.
,
Lee
,
M. G.
, and
Barlat
,
F.
, 2011, “
Application of Homogeneous Potentials for the Modeling of the Bauschinger Effects in Ultra Low Carbon Steel
,” ESAForm.
44.
Perzyna
,
P.
, 1966, “
Fundamental Problems in Viscoplasticity
,”
Recent Advances in Applied Mechanics
,
Academic
,
New York
, Vol.
9
, pp.
243
377
.
45.
Krempl
,
E.
, 1996, “
A Small-Strain Viscoplasticity Theory Based on Overstress
,”
Unified Constitutive Laws of Plastic Deformation
,
A. S.
Krausz
and
K.
Krausz
, eds.,
Academic
,
San Diego, CA
, pp.
281
318
.
46.
Plunkett
,
B.
,
Cazacu
,
O.
,
Lebensohn
,
R. A.
, and
Barlat
,
F.
, 2007, “
Elastic-Viscoplastic Anisotropic Modeling of Textured Metals and Validation Using the Taylor Cylinder Impact Test
,“
Int. J. Plast.
,
23
, pp.
1001
1021
.
47.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol.
,
99
, pp.
2
15
.
48.
Tvergaard
,
V.
, 1982, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
,
18
, pp.
237
252
.
49.
Tvergaard
,
V.
, and
Needleman
,
A.
, 2001, “
The Modified Gurson Model
,”
Handbook of Materials Behavior Models
,
J.
Lemaitre
, ed.,
Academic
,
San Diego, CA
, pp.
430
435
.
50.
Siruguet
,
K.
, and
Leblond
,
J.-B.
, 2004, “
Effect of Void Locking by Inclusions Upon the Plastic Behavior of Porous Ductile Solids—I: Theoretical Modeling and Numerical Study of Void Growth
,”
Int. J. Plast.
,
20
, pp.
225
254
.
51.
Siruguet
,
K.
, and
Leblond
J.-B.
, 2004, “
Effect of Void Locking by Inclusions Upon the Plastic Behavior of Porous Ductile Solids—Part II: Theoretical Modeling and Numerical Study of Void Coalescence
,”
Int. J. Plast.
,
20
, pp.
255
268
.
52.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
, 1999, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
, pp.
2467
2512
.
53.
Huang
,
Z. P.
, and
Wang
,
J.
, 2006, “
Nonlinear Mechanics of Solids Containing Isolated Voids
,”
Appl. Mech. Rev.
,
59
, pp.
210
229
.
54.
Chaboche
,
J. L.
, 1981, “
Continuous Damage Mechanics—A Tool to Describe Phenomena Before Crack Initiation
,”
Nucl. Eng. Des.
,
64
, pp.
233
247
.
55.
Skrzypek
,
J.
, and
Ganczarski
,
A.
, 1999,
Modeling of Material Damage and Failure of Structures
,
Springer
,
Berlin
.
56.
Chow
,
C. L.
, and
Wei
,
Y.
, 2001, “
Anisotropic Damage
,”
Handbook of Materials Behavior Models
,
J.
Lemaitre
ed.,
Academic
,
San Diego, CA
, pp.
421
429
.
57.
Woo
,
D. M.
, 1968, “
On the Complete Solution of the Deep-drawing Problem
,”
Int. J. Mech. Sci.
,
10
, pp.
83
94
.
58.
Wifi
,
A. S.
, 1976, “
An Incremental Complete Solution of the Stretch-forming and Deep-drawing of a Circular Blank Using a Hemispherical Punch
,”
Int. J. Mech. Sci.
,
18
, pp.
23
31
.
59.
Gotoh
,
M.
, and
Ishise
,
F.
, 1978, “
A Finite Element Analysis of Rigid-Plastic Deformation of the Flange in a Deep-Drawing Process Based on a Fourth-Degree Yield Function
,”
Int. J. Mech. Sci.
,
20
, pp.
423
435
.
60.
Wang
,
N .M.
, and
Budiansky
,
B.
, 1978, “
Analysis of Sheet Metal Stamping by an Finite-Element Method
,”
Trans. ASME. J. Appl. Mech.
,
45
, pp.
73
82
.
61.
Tang
,
S. C.
,
Chu
,
E.
, and
Samanta
,
S. K.
, 1982, “
Finite Element Prediction of the Deformed Shape of an Automotive Body Panel During Performed Stage
,” NUMIFORM’82, Pineridge Press, Swansea, pp.
629
640
.
62.
Toh
,
C. H.
, and
Kobayashi
,
S.
, 1983,
Finite Element Process Modeling of Sheet Metal Forming of General Shapes
,
Grundlagen der Umformtechnik
,
Berlin
, pp.
39
56
.
63.
Hallquist
,
J. O.
, 1995,
LS-DYNA3D Theoretical/Users Manual
,
Livermore Software Technology Co.
,
Livermore, CA
.
64.
Maker
,
B.
, 1995,
LS-NIKE3D Users Manual
,
Livermore Software Technology Co.
,
Livermore, CA
.
65.
Hughes
,
T. J. R.
, and
Liu
,
W. K.
, 1981, “
Nonlinear Finite Element Analysis of Shells: Part I, Three-Dimensional Shells
,”
Comp. Methods Appl. Mech. Eng.
,
27
, pp.
221
362
.
66.
Belytschko
,
T.
, and
Tsay
,
C. S.
, 1981, “
Explicit Algorithms for the Nonlinear Dynamics of Shells
,”
ASME J. Appl. Mech.
,
48
, pp.
209
231
.
67.
Tekkaya
,
A. E.
, 2000, “
State-of-the-Art of Simulation of Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
103
, pp.
14
22
.
68.
Häggblad
,
H. A.
, and
Oldenburg
,
M.
, 1994, “
Modeling and Simulation of Metal Powder Die Pressing With Use of Explicit Time Integration
,”
Model. Simul. Mate. Sci. Eng.
,
2
, pp.
893
911
.
69.
Goudreau
,
G. L.
, 1994, “
Computational Structural Mechanics: From National Defense to National Resource
,”
Comput. Sci. Eng.
,
1
, pp.
33
42
.
70.
Wu
,
S. R.
, 2006, “
Lumped Mass Matrix in Explicit Finite Element Method for Transient Dynamics of Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
5983
5994
.
71.
Li
,
K. P.
,
Carden
,
W. P.
, and
Wagoner
,
R. H.
, 2002, “
Simulation of Springback
,”
Int. J. Mech. Sci.
,
44
, pp.
103
122
.
72.
Li
,
K. P.
,
Geng
,
L.
,
Wagoner
,
R. H.
, 1999, “
Simulation of Springback: Choice of Element
,”
Adv. Technol. Plast.
,
3
, pp.
2091
2098
.
73.
Andersson
,
A.
, and
Holmberg
,
S.
, 2002, “
Simulation and Verification of Different Parameters Effect on Springback Results
,”
Proceedings of NUMISHEET
, Jeju Island, Korea, pp.
201
206
.
74.
Yamamura
,
N.
,
Kuwabara
,
T.
, and
Makinouchi
,
A.
, 2002, “
Springback Simulations for Stretch-Bending and Draw-Bending Processes Using the Static Explicit FEM code, With an Algorithm for Canceling Non-Equilibrated Forces
,”
Proceedings of NUMISHEET
, Jeju Island, Korea. pp.
25
30
.
75.
Yao
,
H.
,
Liu
,
S.-D.
,
Du
,
C.
, and
Hu
,
Y.
, 2002, “
Techniques to Improve Springback Prediction Accuracy Using Dynamic Explicit FEA Codes
,”
SAE Trans.
,
111
, pp.
100
106
.
76.
Kulkarni
,
P.
, 2004, “
Effect of Strain Rates on Springback Predictions in 304-Brushed Stainless Steel. Materials Processes and Design: Modeling, Simulation, and Applications
,”
Proceedings AIP Conference 712, NUMIFORM
,
American Institute of Physics
,
Columbus, OH
, pp.
790
795
.
77.
Wriggers
,
P.
,
Krstulovic-Opara
,
L.
, and
Korelc
,
J.
, 2001, “
Smooth C1-Interpolations for Two-Dimensional Frictional Contact Problems
,”
Int. J. Numer. Mech. Eng.
,
51
, pp.
1469
1495
.
78.
Puso
,
M. A.
, and
Laursen
,
T. A.
, 2002, “
A 3D Contact Smoothing Method Using Gregory Patches
,”
Int. J. Numer. Mech. Eng.
,
54
, pp.
1161
1194
.
79.
Stadler
,
M.
,
Holzapfel
,
G. A.
, and
Korelc
,
J.
, 2003, “
Cn Continuous Modeling of Smooth Contact Surfaces Using NURBS and Application to 2D Problems
,”
Int. J. Numer. Mech. Eng.
,
57
, pp.
2177
2203
.
80.
Wang
,
S. P.
, and
Nakamachi
,
E.
, 1997, “
The Inside-Outside Contact Search Algorithm for Finite Element Analysis
,”
Int. J. Numer. Mech. Eng.
,
40
, pp.
3665
3685
.
81.
Santos
,
A.
, and
Makinouchi
,
A.
, 1995, “
Contact Strategies to Deal with Different Tool Description in Static Explicit FEM for 3-D Sheet Metal Forming Simulation
,”
J. Mater. Process. Technol.
,
50
, pp.
277
291
.
82.
Wang
,
J.
, and
Wagoner
,
R. H.
, 2005, “
A Practical Large-strain Solid Finite Element for Sheet Forming
,”
Int. J. Numer. Mech. Eng.
,
63
, pp.
473
501
.
83.
Zhuang
,
S.
,
Lee
,
M. G.
,
Keum
,
Y. T.
,
Kim
,
J. H.
, and
Wagoner
,
R. H.
, 2010, “
Improved Contact Procedure for Implicit Finite Element Sheet Forming Simulation
,”
Int. J. Numer. Mech. Eng.
,
24
, pp.
1759
1779
.
84.
Prager
,
W.
, 1956, “
A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids
,”
ASME J. Appl. Mech.
,
23
, pp.
493
502
.
85.
Ziegler
,
H.
, 1959, “
A Modification of Prager’s Hardening Rule
,”
Q. Appl. Math.
17
, pp.
55
65
.
86.
Amstrong
,
P. J.
, and
Frederick
,
C. O.
, 1966, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” Report RD/B/N731,
Berkeley Nuclear Laboratories
, p.
731
.
87.
Chaboche
,
J. L.
, 1986, “
Time Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
, pp.
149
188
.
88.
Dafalias
,
Y. F.
, and
Popov
,
E. P.
, 1976, “
Plastic Internal Variables Formalism of Cyclic Plastcity
,”
ASME J. Appl. Mech.
,
98
, pp.
645
651
.
89.
Krieg
,
R. D.
, 1975, “
A Practical Two Surface Plasticity Theory
,”
ASME J. Appl. Mech.
,
42
, pp.
641
646
.
90.
Ohno
,
N.
, and
Wang
,
J. D.
, 1993, “
Nonlinear Hardening Rules With Critical State of Dynamic Recovery: Part I-Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
9
, pp.
375
390
.
91.
Geng
L.
, and
Wagoner
,
R. H.
, 2002, “
Role of Plastic Anisotropy and Its Evolution on Springback
,”
Int. J. Mech. Sci.
,
44
, pp.
123
148
.
92.
Chun
,
B. K.
,
Jinn
,
J. T.
, and
Lee
,
J. K.
, 2002, “
Modeling the Bauschinger Effect for Sheet Metals, Part I: Theory
,”
Int. J. Plast.
,
18
, pp.
571
595
.
93.
Chung
,
K.
,
Lee
,
M. G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
, and
Barlat
,
F.
, 2005, “
Spring-back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part I: Theory and Formulation
,”
Int. J. Plast.
,
21
, pp.
861
882
.
94.
Lee
,
M. G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
,
Wagoner
,
R. H.
, and
Chung
,
K.
, 2005, “
Spring-Back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part II: Characterization of Material Properties
,”
Int. J. Plast.
,
21
, pp.
883
914
.
95.
Lee
,
M. G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
, and
Chung
,
K.
, 2005, “
Spring-back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part III: Applications
,”
Int. J. Plast.
,
21
, pp.
915
953
.
96.
Kim
,
J. H.
,
Lee
,
M. G.
,
Barlat
,
F.
,
Wagoner
,
R. H.
, and
Chung
,
K.
, 2007, “
An Elasto-Plastic Constitutive Model With Plastic Strain Rate Potentials for Anisotropic Cubic Metals
,”
Int. J. Plast.
,
24
, pp.
2298
2334
.
97.
Urban
,
M.
,
Krahn
,
M.
,
Hirt
,
G.
, and
Kopp
,
R.
, 2006, “
Numerical Research and Optimisation of High Pressure Sheet Forming of Tailor Rolled Blanks
,”
J. Mater. Process. Technol.
,
177
, pp.
360
363
.
98.
Roll
,
K.
, 2007, “
Advanced Simulation Techniques - Exceeding Reality?
,”
Proceedings of Materials Science and Technology
, The Minerals, Metals, Materials Society, pp.
1
14
.
99.
Neukamm
,
F.
,
Feucht
,
M.
, and
Haufe
,
A.
, 2008, “
Consistent Damage Modelling in the Process Chain of Forming to Crashworthiness Simulations
,” LS-DYNA Forum, DYNAmore GmbH, pp.
H
-I-11-
20
.
100.
Wiegand
,
K.
,
Zubeil
,
M.
, and
Roll
,
K.
, 2010, “
Use of Simulation in the Process Chain of Car Body Manufacturing
,” LS-DYNA Forum 2010, DYNAmore GmbH, pp.
A
-I-53-
60
.
101.
Clees
,
T.
, and
Steffes-lai
,
D.
, 2010, “
Efficient Statistical Analysis of Process Chains Applied to a Formig-to-Crash Example
,” LS-DYNA Forum 2010, DYNAmore GmbH, pp.
H
-I-11-
21
.
102.
Osakada
,
K.
, 2010, “
Application of Servo Presses to Metal Forming Processes
,”
J. Iron Steel Res. Int.
,
81
, pp.
9
16
.
103.
Tamai
,
Y.
,
Yamasaki
,
Y.
,
Yoshitake
,
A.
, and
Imura
,
T.
, 2010, “
Improvement of Formability in Stamping of Steel Sheets by Motion Control of Servo Press
,”
J. Iron Steel Res. Int.
,
81
, pp.
686
689
.
104.
Hasegawa
,
K.
,
Inada
,
A.
,
Kawachi
,
N.
, and
Endou
,
J.
, 2010, “
Effect of Parallel Control of Press with Eccentric Load
,”
J. Iron Steel Res. Int.
,
81
, pp.
690
693
.
105.
Junlapen
,
K.
,
Kaewtatip
,
P.
, and
Koga
,
N.
, 2010, “
Reduction in Blanking Noise Using NC Servo Press Machine
,”
J. Iron Steel Res. Int.
,
81
, pp.
1042
1045
.
106.
Maeno
,
T.
,
Osakada
,
K.
, and
Mori
,
K.
, “
Reduction of Friction in Compression of Plates by Load Pulsation
,”
Int. J. Mach. Tools Manuf.
, doi: .
107.
Komatsu
,
I.
, and
Murakami
,
T.
, 2009,
Practical Use of Servo Press
,
Nikkan-Kougyou-Shinbunsha
,
Tokyo
(in Japanese).
108.
Hosford
,
W.
, and
Duncan
,
J.
, 1999, “
Sheet Metal Forming: A Review
,”
J. Met.
,
51
, pp.
39
44
.
You do not currently have access to this content.