Abstract

Micromachining of nanocomposites is deemed to be a complicated process due to the anisotropic, heterogeneous structure, and advanced mechanical properties of these materials associated with the size effects in micromachining. It leads to poorer machinability in terms of high cutting force, low surface quality, and high rate of tool wear. In part 1 of this two-part review paper, a comprehensive review on mechanical properties of various nanocomposites will be presented while the second part of the paper will focus on the micro-machinability of these nanocomposite materials.

References

1.
Blumstein
,
A.
,
1961
, “
Étude des polymérisations en couche adsorbée
,”
Bulletin de la Societe Chimique de France
,
5
, pp.
899
906
.
2.
Blumstein
,
A.
,
1965
, “
Polymerization of Adsorbed Monolayers. II. Thermal Degradation of the Inserted Polymer
,”
J. Polym. Sci. Part A: Gen. Pap.
,
3
(
7
), pp.
2665
2672
. 10.1002/pol.1965.100030721
3.
Arora
,
I.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2013
, “
Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041007
. 10.1115/1.4024814
4.
Njuguna
,
J.
, and
Pielichowski
,
K.
,
2003
, “
Polymer Nanocomposites for Aerospace Applications: Properties
,”
Adv. Eng. Mater.
,
5
(
11
), pp.
769
778
.
5.
Garces
,
J. M.
,
Moll
,
D. J.
,
Bicerano
,
J.
,
Fibiger
,
R.
, and
McLeod
,
D. G.
,
2000
, “
Polymeric Nanocomposites for Automotive Applications
,”
Adv. Mater.
,
12
(
23
), pp.
1835
1839
.
6.
Feldman
,
D.
,
2016
, “
Polymer Nanocomposites in Medicine
,”
J. Macromol. Sci., Part A
,
53
(
1
), pp.
55
62
. 10.1080/10601325.2016.1110459
7.
Dinca
,
I.
,
Ban
,
C.
,
Stefan
,
A.
, and
Pelin
,
G.
,
2012
, “
Nanocomposites as Advanced Materials for Aerospace Industry
,”
Incas Bull.
,
4
(
3
), p.
73
86
. 10.13111/2066-8201.2012.4.3.7
8.
Leszczyńska
,
A.
,
Njuguna
,
J.
,
Pielichowski
,
K.
, and
Banerjee
,
J.
,
2007
, “
Polymer/Montmorillonite Nanocomposites With Improved Thermal Properties: Part I. Factors Influencing Thermal Stability and Mechanisms of Thermal Stability Improvement
,”
Thermochim. Acta
,
453
(
2
), pp.
75
96
. 10.1016/j.tca.2006.11.002
9.
Bai
,
J.
, and
Allaoui
,
A.
,
2003
, “
Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation
,”
Compos. Part A: Appl. Sci. Manuf.
,
34
(
8
), pp.
689
694
.
10.
Dong
,
N.
,
Zhong
,
M.
,
Fei
,
P.
,
Lei
,
Z.
, and
Su
,
B.
,
2016
, “
Magnetic and Electrochemical Properties of PANI-CoFe2O4 Nanocomposites Synthesized via a Novel One-Step Solvothermal Method
,”
J. Alloys Compd.
,
660
, pp.
382
386
. 10.1016/j.jallcom.2015.11.175
11.
Kim
,
H.
,
Miura
,
Y.
, and
Macosko
,
C. W.
,
2010
, “
Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity
,”
Chem. Mater.
,
22
(
11
), pp.
3441
3450
. 10.1021/cm100477v
12.
Liu
,
Y.
,
Xiong
,
W.
,
Jiang
,
L.
,
Zhou
,
Y.
, and
Lu
,
Y.
,
2016
, “
Precise 3D Printing of Micro/nanostructures using Highly Conductive Carbon Nanotube-thiol-acrylate Composites
,”
Laser 3D Manufacturing III
,
San Francisco, CA
, p.
973808
.
13.
Imbaby
,
M.
, and
Jiang
,
K.
,
2009
, “
Fabrication of Free Standing 316-L Stainless Steel–Al2O3 Composite Micro Machine Parts by Soft Moulding
,”
Acta Mater.
,
57
(
16
), pp.
4751
4757
. 10.1016/j.actamat.2009.06.034
14.
Imbaby
,
M.
, and
Jiang
,
K.
,
2010
, “
Stainless Steel–Titania Composite Micro Gear Fabricated by Soft Moulding and Dispersing Technique
,”
Microelectron. Eng.
,
87
(
5–8
), pp.
1650
1654
. 10.1016/j.mee.2009.10.017
15.
Jiguet
,
S.
,
Judelewicz
,
M.
,
Mischler
,
S.
,
Bertch
,
A.
, and
Renaud
,
P.
,
2006
, “
Effect of Filler Behavior on Nanocomposite SU8 Photoresist for Moving Micro-Parts
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1273
1276
. 10.1016/j.mee.2006.01.068
16.
Tang
,
Q. Y.
,
Chan
,
Y. C.
,
Wong
,
N. B.
, and
Cheung
,
R.
,
2010
, “
Surfactant-Assisted Processing of Polyimide/Multiwall Carbon Nanotube Nanocomposites for Microelectronics Applications
,”
Polym. Int.
,
59
(
9
), pp.
1240
1245
. 10.1002/pi.2855
17.
Chen
,
F.-C.
,
Chu
,
C.-W.
,
He
,
J.
,
Yang
,
Y.
, and
Lin
,
J.-L.
,
2004
, “
Organic Thin-Film Transistors With Nanocomposite Dielectric Gate Insulator
,”
Appl. Phys. Lett.
,
85
(
15
), pp.
3295
3297
. 10.1063/1.1806283
18.
Tang
,
H.
, and
Sodano
,
H. A.
,
2013
, “
High Energy Density Nanocomposite Capacitors Using Non-Ferroelectric Nanowires
,”
Appl. Phys. Lett.
,
102
(
6
), p.
063901
. 10.1063/1.4792513
19.
Raj
,
P. M.
,
Sharma
,
H.
,
Reddy
,
G. P.
,
Altunyurt
,
N.
,
Swaminathan
,
M.
,
Tummala
,
R.
, and
Nair
,
V.
,
2014
, “
Cobalt–Polymer Nanocomposite Dielectrics for Miniaturized Antennas
,”
J. Electron. Mater.
,
43
(
4
), pp.
1097
1106
. 10.1007/s11664-014-3025-5
20.
Pithaksareetham
,
N.
,
Hongkarnjanakul
,
N.
, and
Suchat
,
S.
,
2018
, “
Eco‐Nanocomposites with Epoxidized Natural Rubber for Improved Mechanical Properties Essential to Unmanned Aerial Vehicles Propeller Applications
,”
Adv. Polymer Technol.
,
37
(
8
), pp.
2946
2957
.
21.
Pines
,
D. J.
, and
Bohorquez
,
F.
,
2006
, “
Challenges Facing Future Micro-air-Vehicle Development
,”
J. Aircr.
,
43
(
2
), pp.
290
305
. 10.2514/1.4922
22.
Vijayanandh
,
R.
,
Kumar
,
N.
,
Kumar
,
S.
,
Kumar
,
R.
, and
Kumar
,
N.
,
2018
, “
Material Optimization of High Speed Micro Aerial Vehicle Using FSI Simulation
,”
Proc. Comput. Sci.
,
133
, pp.
2
9
. 10.1016/j.procs.2018.07.002
23.
Kumar
,
D.
,
Goyal
,
T.
,
Kumar
,
V.
,
Mohite
,
P.
,
Kamle
,
S.
, and
Verma
,
V.
,
2015
, “
Development and Modal Analysis of Bioinspired CNT/Epoxy Nanocomposite MAV Flapping Wings
,”
J. Aerosp. Sci. Technol.
,
67
(
1
), pp.
88
93
.
24.
Sun
,
X.
, and
Li
,
J.
,
2007
, “
Friction and Wear Properties of Electrodeposited Nickel–Titania Nanocomposite Coatings
,”
Tribol. Lett.
,
28
(
3
), pp.
223
228
. 10.1007/s11249-007-9254-5
25.
Masuda
,
J. i.
, and
Torkelson
,
J. M.
,
2008
, “
Dispersion and Major Property Enhancements in Polymer/Multiwall Carbon Nanotube Nanocomposites via Solid-State Shear Pulverization Followed by Melt Mixing
,”
Macromolecules
,
41
(
16
), pp.
5974
5977
. 10.1021/ma801321j
26.
Roul
,
J.
,
Sahoo
,
S. K.
, and
Mohapatra
,
R.
,
2013
, “
Design and Characterization of Biodegradable Polymer-Clay Nanocomposites Prepared by Solution Mixing Technique
,”
Int. J. Nano Dimens.
,
4
(
2
), pp.
135
139
.
27.
Zeng
,
Q.
,
Wang
,
D.
,
Yu
,
A.
, and
Lu
,
G.
,
2002
, “
Synthesis of Polymer–Montmorillonite Nanocomposites by In Situ Intercalative Polymerization
,”
Nanotechnology
,
13
(
5
), p.
549
553
. 10.1088/0957-4484/13/5/301
28.
Lee
,
M.
,
Kim
,
B.
,
Nam
,
J.
,
Lee
,
Y.
,
Son
,
Y.
, and
Seo
,
S.
,
2003
, “
In-situ Formation of Gold Nanoparticle/Conducting Polymer Nanocomposites
,”
Mol. Cryst. Liq. Cryst.
,
407
(
1
), pp.
1
6
. 10.1080/744819006
29.
Rahman
,
I. A.
, and
Padavettan
,
V.
,
2012
, “
Synthesis of Silica Nanoparticles by Sol-gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review
,”
J. Nanomater.
,
2012
, p.
8
. 10.1155/2012/132424
30.
Choa
,
Y.-H.
,
Yang
,
J.-K.
,
Kim
,
B.-H.
,
Jeong
,
Y.-K.
,
Lee
,
J.-S.
,
Nakayama
,
T.
,
Sekino
,
T.
, and
Niihara
,
K.
,
2003
, “
Preparation and Characterization of Metal/Ceramic Nanoporous Nanocomposite Powders
,”
J. Magn. Magn. Mater.
,
266
(
1–2
), pp.
12
19
. 10.1016/S0304-8853(03)00450-5
31.
Zhou
,
S.-m.
,
Zhang
,
X.-b.
,
Ding
,
Z.-p.
,
Min
,
C.-y.
,
Xu
,
G.-l.
, and
Zhu
,
W.-m.
,
2007
, “
Fabrication and Tribological Properties of Carbon Nanotubes Reinforced Al Composites Prepared by Pressureless Infiltration Technique
,”
Compos. Part A: Appl. Sci. Manuf.
,
38
(
2
), pp.
301
306
. 10.1016/j.compositesa.2006.04.004
32.
Li
,
X.
,
Yang
,
Y.
, and
Cheng
,
X.
,
2004
, “
Ultrasonic-assisted Fabrication of Metal Matrix Nanocomposites
,”
J. Mater. Sci.
,
39
(
9
), pp.
3211
3212
. 10.1023/B:JMSC.0000025862.23609.6f
33.
Ying
,
D.
, and
Zhang
,
D.
,
2000
, “
Processing of Cu–Al2O3 Metal Matrix Nanocomposite Materials by Using High Energy Ball Milling
,”
Mater. Sci. Eng. A
,
286
(
1
), pp.
152
156
. 10.1016/S0921-5093(00)00627-4
34.
Cao
,
Y.
,
Su
,
Q.
,
Che
,
R.
,
Du
,
G.
, and
Xu
,
B.
,
2012
, “
One-step Chemical Vapor Synthesis of Ni/Graphene Nanocomposites With Excellent Electromagnetic and Electrocatalytic Properties
,”
Synth. Met.
,
162
(
11–12
), pp.
968
973
. 10.1016/j.synthmet.2012.04.019
35.
Joseph
,
M.
,
Tsotsos
,
C.
,
Baker
,
M.
,
Kench
,
P.
,
Rebholz
,
C.
,
Matthews
,
A.
, and
Leyland
,
A.
,
2005
, “
Characterisation and Tribological Evaluation of Nitrogen-Containing Molybdenum–Copper PVD Metallic Nanocomposite Films
,”
Surf. Coat. Technol.
,
190
(
2–3
), pp.
345
356
. 10.1016/j.surfcoat.2004.04.074
36.
Kamat
,
P. V.
,
Flumiani
,
M.
, and
Dawson
,
A.
,
2002
, “
Metal–Metal and Metal–Semiconductor Composite Nanoclusters
,”
Colloids Surf., A
,
202
(
2–3
), pp.
269
279
. 10.1016/S0927-7757(01)01071-8
37.
Roy
,
S.
,
Das
,
D.
,
Chakravorty
,
D.
, and
Agrawal
,
D.
,
1993
, “
Magnetic Properties of Glass-Metal Nanocomposites Prepared by the Sol-gel Route and Hot Pressing
,”
J. Appl. Phys.
,
74
(
7
), pp.
4746
4749
. 10.1063/1.354344
38.
Choa
,
Y.
,
Yoo
,
S.
,
Yang
,
J.
,
Park
,
J.
,
Oh
,
S.
,
Kang
,
K.
, and Kang, S.-G.
2007
, “
Effect of Powder Synthesis Processing on the Microstructure and Electrical Conductivity of Sintered CNTs/Fe/Al2O3 Nanocomposites
,”
Materials Science Forum
,
534–536
, pp.
1021
1024
. www.scientific.net/msf.534-536.1021
39.
Schmidt
,
W. R.
,
Narsavage-Heald
,
D. M.
,
Jones
,
D. M.
,
Marchetti
,
P. S.
,
Raker
,
D.
, and
Maciel
,
G. E.
,
1999
, “
Poly (Borosilazane) Precursors to Ceramic Nanocomposites
,”
Chem. Mater.
,
11
(
6
), pp.
1455
1464
. 10.1021/cm980558u
40.
Ennas
,
G.
,
Mei
,
A.
,
Musinu
,
A.
,
Piccaluga
,
G.
,
Pinna
,
G.
, and
Solinas
,
S.
,
1998
, “
Sol–gel Preparation and Characterization of Ni–SiO2 Nanocomposites
,”
J. Non-Cryst. Solids
,
232
, pp.
587
593
. 10.1016/S0022-3093(98)00430-X
41.
Timoshkov
,
I.
,
Kurmashev
,
V.
, and
Timoshkov
,
V.
,
2011
, “Electroplated Nanocomposites of High Wear Resistance for Advanced Systems Application,”
Advances in Nanocomposite Technology
,
A.
Hashim
, ed.,
IntechOpen.
,
Janeza Trdine 9, 51000 Rijeka, Croatia
.
42.
Das
,
R. N.
,
Egitto
,
F. D.
,
Lauffer
,
J. M.
, and
Markovich
,
V. R.
,
2007
, “
Laser Micromachining of Nanocomposite-Based Flexible Embedded Capacitors
,”
2007 Proceedings 57th Electronic Components and Technology Conference
, pp.
435
441
.
43.
Udofia
,
E. N.
, and
Zhou
,
W.
,
2019
, “
A Guiding Framework for Microextrusion Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
050801
. 10.1115/1.4042607
44.
Bartkowiak
,
T.
, and
Brown
,
C. A.
,
2018
, “
A Characterization of Process–Surface Texture Interactions in Micro-Electrical Discharge Machining Using Multiscale Curvature Tensor Analysis
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
). 10.1115/1.4037601
45.
Li
,
J.
,
Liu
,
J.
,
Liu
,
J.
,
Ji
,
Y.
, and
Xu
,
C.
,
2013
, “
Experimental Investigation on the Machinability of SiC Nano-Particles Reinforced Magnesium Nanocomposites During Micro-Milling Processes
,”
Int. J. Manuf. Res.
,
8
(
1
), pp.
64
84
. 10.1504/IJMR.2013.051840
46.
Brinksmeier
,
E.
,
Gläbe
,
R.
,
Riemer
,
O.
, and
Twardy
,
S.
,
2008
, “
Potentials of Precision Machining Processes for the Manufacture of Micro Forming Molds
,”
Microsyst. Technol.
,
14
(
12
), p.
1983
1987
. 10.1007/s00542-008-0656-6
47.
Baig
,
Z.
,
Mamat
,
O.
,
Mustapha
,
M.
,
Mumtaz
,
A.
,
Sarfraz
,
M.
, and
Haider
,
S.
,
2018
, “
An Efficient Approach to Address Issues of Graphene Nanoplatelets (GNPs) Incorporation in Aluminium Powders and Their Compaction Behaviour
,”
Metals
,
8
(
2
), p.
90
. 10.3390/met8020090
48.
Kingston
,
C. T.
,
Jakubek
,
Z. J.
,
Dénommée
,
S.
, and
Simard
,
B.
,
2004
, “
Efficient Laser Synthesis of Single-Walled Carbon Nanotubes Through Laser Heating of the Condensing Vaporization Plume
,”
Carbon
,
42
(
8–9
), pp.
1657
1664
. 10.1016/j.carbon.2004.02.020
49.
Gustafsson
,
H.
,
Isaksson
,
S.
,
Altskär
,
A.
, and
Holmberg
,
K.
,
2016
, “
Mesoporous Silica Nanoparticles With Controllable Morphology Prepared From Oil-in-Water Emulsions
,”
J. Colloid Interface Sci.
,
467
, pp.
253
260
. 10.1016/j.jcis.2016.01.026
50.
Huang
,
M.
, and
Li
,
Z.
,
2006
, “
Influences of Particle Size and Interface Energy on the Stress Concentration Induced by the Oblate Spheroidal Particle and the Void Nucleation Mechanism
,”
Int. J. Solids Struct.
,
43
(
14–15
), pp.
4097
4115
. 10.1016/j.ijsolstr.2005.04.015
51.
Zhou
,
W.
,
Yu
,
D.
,
Wang
,
C.
,
An
,
Q.
, and
Qi
,
S.
,
2008
, “
Effect of Filler Size Distribution on the Mechanical and Physical Properties of Alumina-Filled Silicone Rubber
,”
Polym. Eng. Sci.
,
48
(
7
), pp.
1381
1388
.
52.
Chisholm
,
N.
,
Mahfuz
,
H.
,
Rangari
,
V. K.
,
Ashfaq
,
A.
, and
Jeelani
,
S.
,
2005
, “
Fabrication and Mechanical Characterization of Carbon/SiC-Epoxy Nanocomposites
,”
Compos. Struct.
,
67
(
1
), pp.
115
124
. 10.1016/j.compstruct.2004.01.010
53.
Dekkers
,
M.
, and
Heikens
,
D.
,
1983
, “
The Effect of Interfacial Adhesion on the Tensile Behavior of Polystyrene–Glass-Bead Composites
,”
J. Appl. Polym. Sci.
,
28
(
12
), pp.
3809
3815
. 10.1002/app.1983.070281220
54.
Zhang
,
Q.
,
Tian
,
M.
,
Wu
,
Y.
,
Lin
,
G.
, and
Zhang
,
L.
,
2004
, “
Effect of Particle Size on the Properties of Mg (OH) 2-Filled Rubber Composites
,”
J. Appl. Polym. Sci.
,
94
(
6
), pp.
2341
2346
. 10.1002/app.21037
55.
Radford
,
K.
,
1971
, “
The Mechanical Properties of an Epoxy Resin With a Second Phase Dispersion
,”
J. Mater. Sci.
,
6
(
10
), pp.
1286
1291
.
56.
Spanoudakis
,
J.
, and
Young
,
R.
,
1984
, “
Crack Propagation in a Glass Particle-Filled Epoxy Resin
,”
J. Mater. Sci.
,
19
(
2
), pp.
473
486
.
57.
Nakamura
,
Y.
,
Yamaguchi
,
M.
,
Okubo
,
M.
, and
Matsumoto
,
T.
,
1992
, “
Effect of Particle Size on Mechanical Properties of Epoxy Resin Filled With Angular-Shaped Silica
,”
J. Appl. Polym. Sci.
,
44
(
1
), pp.
151
158
.
58.
Lazzeri
,
A.
,
Thio
,
Y.
, and
Cohen
,
R.
,
2004
, “
Volume Strain Measurements on CaCO3/Polypropylene Particulate Composites: The Effect of Particle Size
,”
J. Appl. Polym. Sci.
,
91
(
2
), pp.
925
935
. 10.1002/app.13268
59.
Suprapakorn
,
N.
,
Dhamrongvaraporn
,
S.
, and
Ishida
,
H.
,
1998
, “
Effect of CaCO3 on the Mechanical and Rheological Properties of a Ring-Opening Phenolic Resin: Polybenzoxazine
,”
Polym. Compos.
,
19
(
2
), pp.
126
132
. 10.1002/pc.10082
60.
Singh
,
R.
,
Zhang
,
M.
, and
Chan
,
D.
,
2002
, “
Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction
,”
J. Mater. Sci.
,
37
(
4
), pp.
781
788
.
61.
Kitey
,
R.
, and
Tippur
,
H.
,
2005
, “
Role of Particle Size and Filler–Matrix Adhesion on Dynamic Fracture of Glass-Filled Epoxy. I. Macromeasurements
,”
Acta Mater.
,
53
(
4
), pp.
1153
1165
. 10.1016/j.actamat.2004.11.012
62.
Roulin-Moloney
,
A.
,
Cantwell
,
W.
, and
Kausch
,
H.
,
1987
, “
Parameters Determining the Strength and Toughness of Particulate-Filled Epoxy Resins
,”
Polym. Compos.
,
8
(
5
), pp.
314
323
. 10.1002/pc.750080506
63.
Onuegbu
,
G. C.
, and
Igwe
,
I. O.
,
2011
, “
The Effects of Filler Contents and Particle Sizes on the Mechanical and End-use Properties of Snail Shell Powder Filled Polypropylene
,”
Mater. Sci. Appl.
,
2
(
7
), pp.
811
817
.
64.
Devaprakasam
,
D.
,
Hatton
,
P.
,
Möbus
,
G.
, and
Inkson
,
B.
,
2008
, “
Effect of Microstructure of Nano-and Micro-Particle Filled Polymer Composites on Their Tribo-Mechanical Performance
,”
EMAG 2007
,
Glasgow Caledonian University & The University of Glasgow, Scotland
,
Sept. 3–7, 2007
, p.
012057
.
65.
Douce
,
J.
,
Boilot
,
J.-P.
,
Biteau
,
J.
,
Scodellaro
,
L.
, and
Jimenez
,
A.
,
2004
, “
Effect of Filler Size and Surface Condition of Nano-Sized Silica Particles in Polysiloxane Coatings
,”
Thin Solid Films
,
466
(
1–2
), pp.
114
122
. 10.1016/j.tsf.2004.03.024
66.
Edwards
,
D.
,
1990
, “
Polymer-filler Interactions in Rubber Reinforcement
,”
J. Mater. Sci.
,
25
(
10
), pp.
4175
4185
. 10.1007/BF00581070
67.
Kamigaito
,
O.
,
1991
, “
What Can be Improved by Nanometer Composites?
,”
J. Jpn. Soc. Powder Powder Metall.
,
38
(
3
), pp.
315
321
. 10.2497/jjspm.38.315
68.
Kumar
,
R. M.
,
Sharma
,
S. K.
,
Kumar
,
B. M.
, and
Lahiri
,
D.
,
2015
, “
Effects of Carbon Nanotube Aspect Ratio on Strengthening and Tribological Behavior of Ultra High Molecular Weight Polyethylene Composite
,”
Compos. Part A: Appl. Sci. Manuf.
,
76
, pp.
62
72
. 10.1016/j.compositesa.2015.05.007
69.
Chowdhury
,
S.
, and
Okabe
,
T.
,
2007
, “
Computer Simulation of Carbon Nanotube Pull-out From Polymer by the Molecular Dynamics Method
,”
Compos. Part A: Appl. Sci. Manuf.
,
38
(
3
), pp.
747
754
. 10.1016/j.compositesa.2006.09.011
70.
Yazdchi
,
K.
, and
Salehi
,
M.
,
2011
, “
The Effects of CNT Waviness on Interfacial Stress Transfer Characteristics of CNT/Polymer Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
42
(
10
), pp.
1301
1309
.
71.
Xiao
,
K.
, and
Zhang
,
L.
,
2004
, “
The Stress Transfer Efficiency of a Single-Walled Carbon Nanotube in Epoxy Matrix
,”
J. Mater. Sci.
,
39
(
14
), pp.
4481
4486
.
72.
Li
,
K.
, and
Saigal
,
S.
,
2007
, “
Micromechanical Modeling of Stress Transfer in Carbon Nanotube Reinforced Polymer Composites
,”
Mater. Sci. Eng. A
,
457
(
1-2
), pp.
44
57
.
73.
Cox
,
H.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
,
3
(
3
), pp.
72
.
74.
Fornes
,
T.
, and
Paul
,
D.
,
2003
, “
Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories
,”
Polymer
,
44
(
17
), pp.
4993
5013
. 10.1016/S0032-3861(03)00471-3
75.
Bhattacharya
,
A.
,
Ganguly
,
K.
,
De
,
A.
, and
Sarkar
,
S.
,
1996
, “
A new Conducting Nanocomposite—PPy-Zirconium (IV) Oxide
,”
Mater. Res. Bull.
,
31
(
5
), pp.
527
530
.
76.
Yoo
,
S.
,
Han
,
S.
, and
Kim
,
W.
,
2013
, “
Strength and Strain Hardening of Aluminum Matrix Composites With Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes
,”
Scr. Mater.
,
68
(
9
), pp.
711
714
.
77.
Choi
,
H.
,
Min
,
B.
,
Shin
,
J.
, and
Bae
,
D.
,
2011
, “
Strengthening in Nanostructured 2024 Aluminum Alloy and Its Composites Containing Carbon Nanotubes
,”
Compos. Part A: Appl. Sci. Manuf.
,
42
(
10
), pp.
1438
1444
. 10.1016/j.compositesa.2011.06.008
78.
Youssef
,
K. M.
,
Scattergood
,
R. O.
,
Murty
,
K. L.
,
Horton
,
J. A.
, and
Koch
,
C. C.
,
2005
, “
Ultrahigh Strength and High Ductility of Bulk Nanocrystalline Copper
,”
Appl. Phys. Lett.
,
87
(
9
), p.
091904
. 10.1063/1.2034122
79.
Nam
,
D. H.
,
Cha
,
S. I.
,
Lim
,
B. K.
,
Park
,
H. M.
,
Han
,
D. S.
, and
Hong
,
S. H.
,
2012
, “
Synergistic Strengthening by Load Transfer Mechanism and Grain Refinement of CNT/Al–Cu Composites
,”
Carbon
,
50
(
7
), pp.
2417
2423
.
80.
Ashby
,
M.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.: J. Theor. Exp. Appl. Phys.
,
21
(
170
), pp.
399
424
.
81.
Nan
,
C.-W.
, and
Clarke
,
D.
,
1996
, “
The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites
,”
Acta Mater.
,
44
(
9
), pp.
3801
3811
.
82.
Lloyd
,
D.
,
1994
, “
Particle Reinforced Aluminium and Magnesium Matrix Composites
,”
Int. Mater. Rev.
,
39
(
1
), pp.
1
23
.
83.
Barai
,
P.
, and
Weng
,
G. J.
,
2011
, “
A Theory of Plasticity for Carbon Nanotube Reinforced Composites
,”
Int. J. Plast.
,
27
(
4
), pp.
539
559
.
84.
Dong
,
S.
,
Zhou
,
J.
,
Hui
,
D.
,
Wang
,
Y.
, and
Zhang
,
S.
,
2015
, “
Size Dependent Strengthening Mechanisms in Carbon Nanotube Reinforced Metal Matrix Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
68
, pp.
356
364
. 10.1016/j.compositesa.2014.10.018
85.
Han
,
B.
,
Sun
,
S.
,
Ding
,
S.
,
Zhang
,
L.
,
Yu
,
X.
, and
Ou
,
J.
,
2015
, “
Review of Nanocarbon-Engineered Multifunctional Cementitious Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
70
, pp.
69
81
. 10.1016/j.compositesa.2014.12.002
86.
Xie
,
X.-L.
,
Mai
,
Y.-W.
, and
Zhou
,
X.-P.
,
2005
, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng. R: Rep.
,
49
(
4
), pp.
89
112
.
87.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.
88.
Iijima
,
S.
, and
Ichihashi
,
T.
,
1993
, “
Single-shell Carbon Nanotubes of 1-nm Diameter
,”
Nature
,
363
(
6430
), pp.
603
605
.
89.
Singh
,
B.
,
Baburao
,
C.
,
Pispati
,
V.
,
Pathipati
,
H.
,
Muthy
,
N.
,
Prassana
,
S.
, and
Rathode
,
B. G.
,
2012
, “
Carbon Nanotubes. A Novel Drug Delivery System
,”
Int. J. Res. Pharm. Chem.
,
2
(
2
), pp.
523
532
.
90.
Kumar
,
S.
,
Rani
,
R.
,
Dilbaghi
,
N.
,
Tankeshwar
,
K.
, and
Kim
,
K.-H.
,
2017
, “
Carbon Nanotubes: A Novel Material for Multifaceted Applications in Human Healthcare
,”
Chem. Soc. Rev.
,
46
(
1
), pp.
158
196
.
91.
Peng
,
L.-M.
,
Zhang
,
Z.
, and
Wang
,
S.
,
2014
, “
Carbon Nanotube Electronics: Recent Advances
,”
Mater. Today
,
17
(
9
), pp.
433
442
.
92.
De Volder
,
M. F.
,
Tawfick
,
S. H.
,
Baughman
,
R. H.
, and
Hart
,
A. J.
,
2013
, “
Carbon Nanotubes: Present and Future Commercial Applications
,”
Science
,
339
(
6119
), pp.
535
539
.
93.
Cebeci
,
H.
,
de Villoria
,
R. G.
,
Hart
,
A. J.
, and
Wardle
,
B. L.
,
2009
, “
Multifunctional Properties of High Volume Fraction Aligned Carbon Nanotube Polymer Composites With Controlled Morphology
,”
Compos. Sci. Technol.
,
69
(
15–16
), pp.
2649
2656
.
94.
Allaoui
,
A.
,
Bai
,
S.
,
Cheng
,
H.-M.
, and
Bai
,
J.
,
2002
, “
Mechanical and Electrical Properties of a MWNT/Epoxy Composite
,”
Compos. Sci. Technol.
,
62
(
15
), pp.
1993
1998
.
95.
Samal
,
S. S.
, and
Bal
,
S.
,
2008
, “
Carbon Nanotube Reinforced Ceramic Matrix Composites—A Review
,”
J. Miner. & Mater. Charac. & Eng.
,
7
(
4
), pp.
355
370
.
96.
Silvestre
,
N.
,
2013
, “
State-of-the-Art Review on Carbon Nanotube Reinforced Metal Matrix Composites
,”
Int. J. Compos. Mater.
,
3
(
6
), pp.
28
44
.
97.
Lu
,
W.
,
Zu
,
M.
,
Byun
,
J. H.
,
Kim
,
B. S.
, and
Chou
,
T. W.
,
2012
, “
State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges
,”
Adv. Mater.
,
24
(
14
), pp.
1805
1833
. 10.1002/adma.201104672
98.
Gong
,
X.
,
Liu
,
J.
,
Baskaran
,
S.
,
Voise
,
R. D.
, and
Young
,
J. S.
,
2000
, “
Surfactant-assisted Processing of Carbon Nanotube/Polymer Composites
,”
Chem. Mater.
,
12
(
4
), pp.
1049
1052
.
99.
Breton
,
Y.
,
Delpeux
,
S.
,
Benoit
,
R.
,
Salvetat
,
J.
,
Sinturel
,
C.
,
Beguin
,
F.
,
Bonnamy
,
S.
,
Desarmot
,
G.
, and
Boufendi
,
L.
,
2002
, “
Functionalization of Multiwall Carbon Nanotubes: Properties of Nanotubes-Epoxy Composites
,”
Mol. Cryst. Liq. Cryst.
,
387
(
1
), pp.
135
140
. 10.1080/10587250215234
100.
Zhu
,
J.
,
Peng
,
H.
,
Rodriguez-Macias
,
F.
,
Margrave
,
J. L.
,
Khabashesku
,
V. N.
,
Imam
,
A. M.
,
Lozano
,
K.
, and
Barrera
,
E. V.
,
2004
, “
Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes
,”
Adv. Funct. Mater.
,
14
(
7
), pp.
643
648
.
101.
Zhu
,
J.
,
Kim
,
J.
,
Peng
,
H.
,
Margrave
,
J. L.
,
Khabashesku
,
V. N.
, and
Barrera
,
E. V.
,
2003
, “
Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites Through Functionalization
,”
Nano Lett.
,
3
(
8
), pp.
1107
1113
. 10.1021/nl0342489
102.
Haggenmueller
,
R.
,
Zhou
,
W.
,
Fischer
,
J.
, and
Winey
,
K.
,
2003
, “
Production and Characterization of Polymer Nanocomposites With Highly Aligned Single-Walled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
3
(
1–2
), pp.
105
110
.
103.
Tang
,
W.
,
Santare
,
M. H.
, and
Advani
,
S. G.
,
2003
, “
Melt Processing and Mechanical Property Characterization of Multi-Walled Carbon Nanotube/High Density Polyethylene (MWNT/HDPE) Composite Films
,”
Carbon
,
41
(
14
), pp.
2779
2785
. 10.1016/S0008-6223(03)00387-7
104.
Kanagaraj
,
S.
,
Varanda
,
F. R.
,
Zhil’tsova
,
T., Oliveira, M. S. A., and Simöes, J. A.
2007
, “
Mechanical Properties of High Density Polyethylene/Carbon Nanotube Composites
,”
Compos. Sci. Technol.
,
67
(
15–16
), pp.
3071
3077
.
105.
Zeng
,
J.
,
Saltysiak
,
B.
,
Johnson
,
W.
,
Schiraldi
,
D. A.
, and
Kumar
,
S.
,
2004
, “
Processing and Properties of Poly (Methyl Methacrylate)/Carbon Nano Fiber Composites
,”
Compos. Part B: Eng.
,
35
(
3
), pp.
245
249
.
106.
Cooper
,
C. A.
,
Ravich
,
D.
,
Lips
,
D.
,
Mayer
,
J.
, and
Wagner
,
H. D.
,
2002
, “
Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix
,”
Compos. Sci. Technol.
,
62
(
7–8
), pp.
1105
1112
. 10.1016/S0266-3538(02)00056-8
107.
Kumar
,
S.
,
Dang
,
T. D.
,
Arnold
,
F. E.
,
Bhattacharyya
,
A. R.
,
Min
,
B. G.
,
Zhang
,
X.
,
Vaia
,
R. A.
,
Park
,
C.
,
Adams
,
W. W.
,
Hauge
,
R. H.
, and
Smalley
,
R. E.
,
2002
, “
Synthesis, Structure, and Properties of PBO/SWNT Composites
,”
Macromolecules
,
35
(
24
), pp.
9039
9043
.
108.
Paiva
,
M.
,
Zhou
,
B.
,
Fernando
,
K.
,
Lin
,
Y.
,
Kennedy
,
J.
, and
Sun
,
Y.-P.
,
2004
, “
Mechanical and Morphological Characterization of Polymer–Carbon Nanocomposites From Functionalized Carbon Nanotubes
,”
Carbon
,
42
(
14
), pp.
2849
2854
.
109.
Roslaniec
,
Z.
,
Broza
,
G.
, and
Schulte
,
K.
,
2003
, “
Nanocomposites Based on Multiblock Polyester Elastomers (PEE) and Carbon Nanotubes (CNT)
,”
Compos. Interfaces
,
10
(
1
), pp.
95
102
. 10.1163/156855403763586819
110.
Pötschke
,
P.
,
Bhattacharyya
,
A. R.
,
Janke
,
A.
, and
Goering
,
H.
,
2003
, “
Melt Mixing of Polycarbonate/Multi-Wall Carbon Nanotube Composites
,”
Compos. Interfaces
,
10
(
4–5
), pp.
389
404
. 10.1163/156855403771953650
111.
Meincke
,
O.
,
Kaempfer
,
D.
,
Weickmann
,
H.
,
Friedrich
,
C.
,
Vathauer
,
M.
, and
Warth
,
H.
,
2004
, “
Mechanical Properties and Electrical Conductivity of Carbon-Nanotube Filled Polyamide-6 and Its Blends With Acrylonitrile/Butadiene/Styrene
,”
Polymer
,
45
(
3
), pp.
739
748
. 10.1016/j.polymer.2003.12.013
112.
Liu
,
T.
,
Phang
,
I. Y.
,
Shen
,
L.
,
Chow
,
S. Y.
, and
Zhang
,
W.-D.
,
2004
, “
Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites
,”
Macromolecules
,
37
(
19
), pp.
7214
7222
. 10.1021/ma049132t
113.
Bikiaris
,
D.
,
2010
, “
Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites
,”
Materials
,
3
(
4
), pp.
2884
2946
. 10.3390/ma3042884
114.
Zhang
,
P.
,
Qiu
,
D.
,
Chen
,
H.
,
Sun
,
J.
,
Wang
,
J.
,
Qin
,
C.
, and
Dai
,
L.
,
2015
, “
Preparation of MWCNTs Grafted With Polyvinyl Alcohol Through Friedel–Crafts Alkylation and Their Composite Fibers With Enhanced Mechanical Properties
,”
J. Mater. Chem. A
,
3
(
4
), pp.
1442
1449
.
115.
Gao
,
J.
,
Itkis
,
M. E.
,
Yu
,
A.
,
Bekyarova
,
E.
,
Zhao
,
B.
, and
Haddon
,
R. C.
,
2005
, “
Continuous Spinning of a Single-Walled Carbon Nanotube−Nylon Composite Fiber
,”
J. Am. Chem. Soc.
,
127
(
11
), pp.
3847
3854
.
116.
Fornes
,
T.
,
Baur
,
J.
,
Sabba
,
Y.
, and
Thomas
,
E.
,
2006
, “
Morphology and Properties of Melt-Spun Polycarbonate Fibers Containing Single-and Multi-Wall Carbon Nanotubes
,”
Polymer
,
47
(
5
), pp.
1704
1714
.
117.
Mishra
,
S.
,
Sonawane
,
S.
, and
Singh
,
R.
,
2005
, “
Studies on Characterization of Nano CaCO3 Prepared by the In Situ Deposition Technique and Its Application in PP-Nano CaCO3 Composites
,”
J. Polym. Sci., Part B: Polym. Phys.
,
43
(
1
), pp.
107
113
. 10.1002/polb.20296
118.
Kearns
,
J. C.
, and
Shambaugh
,
R. L.
,
2002
, “
Polypropylene Fibers Reinforced With Carbon Nanotubes
,”
J. Appl. Polym. Sci.
,
86
(
8
), pp.
2079
2084
. 10.1002/app.11160
119.
Chen
,
X.
,
Wang
,
J.
,
Lin
,
M.
,
Zhong
,
W.
,
Feng
,
T.
,
Chen
,
X.
,
Chen
,
J.
, and
Xue
,
F.
,
2008
, “
Mechanical and Thermal Properties of Epoxy Nanocomposites Reinforced With Amino-Functionalized Multi-Walled Carbon Nanotubes
,”
Mater. Sci. Eng. A
,
492
(
1–2
), pp.
236
242
. 10.1016/j.msea.2008.04.044
120.
Chae
,
H. G.
,
Minus
,
M. L.
, and
Kumar
,
S.
,
2006
, “
Oriented and Exfoliated Single Wall Carbon Nanotubes in Polyacrylonitrile
,”
Polymer
,
47
(
10
), pp.
3494
3504
. 10.1016/j.polymer.2006.03.050
121.
Shokrieh
,
M. M.
,
Saeedi
,
A.
, and
Chitsazzadeh
,
M.
,
2013
, “
Mechanical Properties of Multi-Walled Carbon Nanotube/Polyester Nanocomposites
,”
J. Nanostruct. Chem.
,
3
(
1
), p.
20
. 10.1186/2193-8865-3-20
122.
Jyoti
,
J.
,
Basu
,
S.
,
Singh
,
B. P.
, and
Dhakate
,
S.
,
2015
, “
Superior Mechanical and Electrical Properties of Multiwall Carbon Nanotube Reinforced Acrylonitrile Butadiene Styrene High Performance Composites
,”
Compos. Part B: Eng.
,
83
, pp.
58
65
. 10.1016/j.compositesb.2015.08.055
123.
Shin
,
J.
,
Kim
,
C.
, and
Geckeler
,
K. E.
,
2009
, “
Single-Walled Carbon Nanotube–Polystyrene Nanocomposites: Dispersing Nanotubes in Organic Media
,”
Polym. Int.
,
58
(
5
), pp.
579
583
. 10.1002/pi.2550
124.
Esawi
,
A. M.
,
Salem
,
H. G.
,
Hussein
,
H. M.
, and
Ramadan
,
A. R.
,
2010
, “
Effect of Processing Technique on the Dispersion of Carbon Nanotubes Within Polypropylene Carbon Nanotube-Composites and its Effect on Their Mechanical Properties
,”
Polym. Compos.
,
31
(
5
), pp.
772
780
.
125.
Chen
,
J.
,
Liu
,
B.
,
Gao
,
X.
, and
Xu
,
D.
,
2018
, “
A Review of the Interfacial Characteristics of Polymer Nanocomposites Containing Carbon Nanotubes
,”
RSC Adv.
,
8
(
49
), pp.
28048
28085
.
126.
Gojny
,
F. H.
,
Wichmann
,
M. H.
,
Fiedler
,
B.
, and
Schulte
,
K.
,
2005
, “
Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2300
2313
. 10.1016/j.compscitech.2005.04.021
127.
Sennett
,
M.
,
Welsh
,
E.
,
Wright
,
J.
,
Li
,
W.
,
Wen
,
J.
, and
Ren
,
Z.
,
2001
, “
Dispersion and Alignment of Carbon Nanotubes in Polycarbonate
,”
MRS Online Proc. Libr. Arch.
,
706
(
Z3.31.1
). 10.1557/PROC-706-Z3.31.1
128.
Jang
,
J.
,
Bae
,
J.
, and
Yoon
,
S.-H.
,
2003
, “
A Study on the Effect of Surface Treatment of Carbon Nanotubes for Liquid Crystalline Epoxide–Carbon Nanotube Composites
,”
J. Mater. Chem.
,
13
(
4
), pp.
676
681
. 10.1039/b212190e
129.
Feng
,
W.
,
Bai
,
X.
,
Lian
,
Y.
,
Liang
,
J.
,
Wang
,
X.
, and
Yoshino
,
K.
,
2003
, “
Well-aligned Polyaniline/Carbon-Nanotube Composite Films Grown by In-Situ Aniline Polymerization
,”
Carbon
,
41
(
8
), pp.
1551
1557
. 10.1016/S0008-6223(03)00078-2
130.
Ajayan
,
P.
,
Stephan
,
O.
,
Colliex
,
C.
, and
Trauth
,
D.
,
1994
, “
Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite
,”
Science
,
265
(
5176
), pp.
1212
1214
.
131.
Kimura
,
T.
,
Ago
,
H.
,
Tobita
,
M.
,
Ohshima
,
S.
,
Kyotani
,
M.
, and
Yumura
,
M.
,
2002
, “
Polymer Composites of Carbon Nanotubes Aligned by a Magnetic Field
,”
Adv. Mater.
,
14
(
19
), pp.
1380
1383
.
132.
Sen
,
R.
,
Zhao
,
B.
,
Perea
,
D.
,
Itkis
,
M. E.
,
Hu
,
H.
,
Love
,
J.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
,
2004
, “
Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning
,”
Nano Lett.
,
4
(
3
), pp.
459
464
.
133.
Lynch
,
M. D.
, and
Patrick
,
D. L.
,
2002
, “
Organizing Carbon Nanotubes With Liquid Crystals
,”
Nano Lett.
,
2
(
11
), pp.
1197
1201
. 10.1021/nl025694j
134.
Vacha
,
J.
, and
Boruka
,
M.
,
2015
, “
Mechanical Properties of Acrylonitrile Butadiene Styrene Thermoplastic Polymer Matrix with Carbon Nanotubes
,”
Nanocon 2015
,
Brno, Czech Republic
,
Oct. 14–16
.
135.
Khan
,
S. U.
,
Pothnis
,
J. R.
, and
Kim
,
J.-K.
,
2013
, “
Effects of Carbon Nanotube Alignment on Electrical and Mechanical Properties of Epoxy Nanocomposites
,”
Compos. Part A: Appl. Sci. Manuf.
,
49
, pp.
26
34
. 10.1016/j.compositesa.2013.01.015
136.
Khare
,
K. S.
,
Khabaz
,
F.
, and
Khare
,
R.
,
2014
, “
Effect of Carbon Nanotube Functionalization on Mechanical and Thermal Properties of Cross-Linked Epoxy–Carbon Nanotube Nanocomposites: Role of Strengthening the Interfacial Interactions
,”
ACS Appl. Mater. Interfaces
,
6
(
9
), pp.
6098
6110
. 10.1021/am405317x
137.
Wang
,
C.
,
Xu
,
J.
,
Yang
,
J.
,
Qian
,
Y.
, and
Liu
,
H.
,
2017
, “
In-situ Polymerization and Multifunctional Properties of Surface-Modified Multiwalled Carbon Nanotube-Reinforced Polyimide Nanocomposites
,”
High Perform. Polym.
,
29
(
7
), pp.
797
807
.
138.
Chen
,
Z.-K.
,
Yang
,
J.-P.
,
Ni
,
Q.-Q.
,
Fu
,
S.-Y.
, and
Huang
,
Y.-G.
,
2009
, “
Reinforcement of Epoxy Resins With Multi-Walled Carbon Nanotubes for Enhancing Cryogenic Mechanical Properties
,”
Polymer
,
50
(
19
), pp.
4753
4759
.
139.
Jangam
,
S.
,
Raja
,
S.
, and
Reddy
,
K. H.
,
2018
, “
Effect of Multiwalled Carbon Nanotube Alignment on the Tensile Fatigue Behavior of Nanocomposites
,”
J. Compos. Mater.
,
52
(
17
), pp.
2365
2374
. 10.1177/0021998317745585
140.
Shiju
,
J.
,
Al-Sagheer
,
F.
,
Bumajdad
,
A.
, and
Ahmad
,
Z.
,
2018
, “
In-Situ Preparation of Aramid-Multiwalled CNT Nano-Composites: Morphology, Thermal Mechanical and Electric Properties
,”
Nanomaterials
,
8
(
5
), p.
309
. 10.3390/nano8050309
141.
Buffa
,
F.
,
Abraham
,
G. A.
,
Grady
,
B. P.
, and
Resasco
,
D.
,
2007
, “
Effect of Nanotube Functionalization on the Properties of Single-Walled Carbon Nanotube/Polyurethane Composites
,”
J. Polym. Sci., Part B: Polym. Phys.
,
45
(
4
), pp.
490
501
. 10.1002/polb.21069
142.
Gojny
,
F.
,
Wichmann
,
M.
,
Köpke
,
U.
,
Fiedler
,
B.
, and
Schulte
,
K.
,
2004
, “
Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,”
Compos. Sci. Technol.
,
64
(
15
), pp.
2363
2371
.
143.
Andrews
,
R.
, and
Weisenberger
,
M.
,
2004
, “
Carbon Nanotube Polymer Composites
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(
1
), pp.
31
37
. 10.1016/j.cossms.2003.10.006
144.
Cha
,
J.
,
Jun
,
G. H.
,
Park
,
J. K.
,
Kim
,
J. C.
,
Ryu
,
H. J.
, and
Hong
,
S. H.
,
2017
, “
Improvement of Modulus, Strength and Fracture Toughness of CNT/Epoxy Nanocomposites Through the Functionalization of Carbon Nanotubes
,”
Compos. Part B: Eng.
,
129
, pp.
169
179
. 10.1016/j.compositesb.2017.07.070
145.
Chen
,
Y.
,
Liu
,
B.
,
He
,
X.
,
Huang
,
Y.
, and
Hwang
,
K.
,
2010
, “
Failure Analysis and the Optimal Toughness Design of Carbon Nanotube-Reinforced Composites
,”
Compos. Sci. Technol.
,
70
(
9
), pp.
1360
1367
. 10.1016/j.compscitech.2010.04.015
146.
Ma
,
C.
,
Liu
,
H.-Y.
,
Du
,
X.
,
Mach
,
L.
,
Xu
,
F.
, and
Mai
,
Y.-W.
,
2015
, “
Fracture Resistance, Thermal and Electrical Properties of Epoxy Composites Containing Aligned Carbon Nanotubes by Low Magnetic Field
,”
Compos. Sci. Technol.
,
114
, pp.
126
135
. 10.1016/j.compscitech.2015.04.007
147.
Ayatollahi
,
M.
,
Shadlou
,
S.
, and
Shokrieh
,
M.
,
2011
, “
Fracture Toughness of Epoxy/Multi-Walled Carbon Nanotube Nano-Composites Under Bending and Shear Loading Conditions
,”
Mater. Des.
,
32
(
4
), pp.
2115
2124
. 10.1016/j.matdes.2010.11.034
148.
Coto
,
B.
,
Antia
,
I.
,
Barriga
,
J.
,
Blanco
,
M.
, and
Sarasua
,
J.-R.
,
2013
, “
Influence of the Geometrical Properties of the Carbon Nanotubes on the Interfacial Behavior of Epoxy/CNT Composites: A Molecular Modelling Approach
,”
Comput. Mater. Sci.
,
79
, pp.
99
104
. 10.1016/j.commatsci.2013.05.057
149.
Liu
,
Y. J.
, and
Chen
,
X.
,
2003
, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
,
35
(
1–2
), pp.
69
81
. 10.1016/S0167-6636(02)00200-4
150.
Ayatollahi
,
M.
,
Shadlou
,
S.
,
Shokrieh
,
M.
, and
Chitsazzadeh
,
M.
,
2011
, “
Effect of Multi-Walled Carbon Nanotube Aspect Ratio on Mechanical and Electrical Properties of Epoxy-Based Nanocomposites
,”
Polym. Test.
,
30
(
5
), pp.
548
556
. 10.1016/j.polymertesting.2011.04.008
151.
Inam
,
F.
,
Vo
,
T.
,
Jones
,
J. P.
, and
Lee
,
X.
,
2013
, “
Effect of Carbon Nanotube Lengths on the Mechanical Properties of Epoxy Resin: An Experimental Study
,”
J. Compos. Mater.
,
47
(
19
), pp.
2321
2330
. 10.1177/0021998312457198
152.
Hollertz
,
R.
,
Chatterjee
,
S.
,
Gutmann
,
H.
,
Geiger
,
T.
,
Nüesch
,
F.
, and
Chu
,
B.
,
2011
, “
Improvement of Toughness and Electrical Properties of Epoxy Composites With Carbon Nanotubes Prepared by Industrially Relevant Processes
,”
Nanotechnology
,
22
(
12
), p.
125702
. 10.1088/0957-4484/22/12/125702
153.
Cho
,
S.-G.
, and
Ko
,
K.-C.
,
2010
, “
Surface Free Energy and Super-Hydrophobic Coating of Multi-Walled Carbon Nanotubes by 3: 1 TMCS/Toluene Glow Discharge Plasma Under Low Pressure
,”
Thin Solid Films
,
518
(
22
), pp.
6619
6623
. 10.1016/j.tsf.2010.03.136
154.
Nuriel
,
S.
,
Liu
,
L.
,
Barber
,
A.
, and
Wagner
,
H.
,
2005
, “
Direct Measurement of Multiwall Nanotube Surface Tension
,”
Chem. Phys. Lett.
,
404
(
4–6
), pp.
263
266
. 10.1016/j.cplett.2005.01.072
155.
Zhang
,
L.
,
Wang
,
J.
,
Fuentes
,
C. A.
,
Zhang
,
D.
,
Van Vuure
,
A. W.
,
Seo
,
J. W.
, and
Seveno
,
D.
,
2017
, “
Wettability of Carbon Nanotube Fibers
,”
Carbon
,
122
, pp.
128
140
.
156.
Atif
,
R.
, and
Inam
,
F.
,
2016
, “
Reasons and Remedies for the Agglomeration of Multilayered Graphene and Carbon Nanotubes in Polymers
,”
Beilstein J. Nanotechnol.
,
7
(
1
), pp.
1174
1196
. 10.3762/bjnano.7.109
157.
He
,
C.
,
Zhao
,
N.
,
Shi
,
C.
, and
Song
,
S.
,
2009
, “
Mechanical Properties and Microstructures of Carbon Nanotube-Reinforced Al Matrix Composite Fabricated by In Situ Chemical Vapor Deposition
,”
J. Alloys Compd.
,
487
(
1–2
), pp.
258
262
. 10.1016/j.jallcom.2009.07.099
158.
Kondoh
,
K.
,
Threrujirapapong
,
T.
,
Umeda
,
J.
, and
Fugetsu
,
B.
,
2012
, “
High-temperature Properties of Extruded Titanium Composites Fabricated From Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion
,”
Compos. Sci. Technol.
,
72
(
11
), pp.
1291
1297
. 10.1016/j.compscitech.2012.05.002
159.
Fukuda
,
H.
,
Kondoh
,
K.
,
Umeda
,
J.
, and
Fugetsu
,
B.
,
2011
, “
Interfacial Analysis Between Mg Matrix and Carbon Nanotubes in Mg–6 wt% Al Alloy Matrix Composites Reinforced With Carbon Nanotubes
,”
Compos. Sci. Technol.
,
71
(
5
), pp.
705
709
.
160.
Ostovan
,
F.
,
Matori
,
K. A.
,
Toozandehjani
,
M.
,
Oskoueian
,
A.
,
Yusoff
,
H. M.
,
Yunus
,
R.
,
Mohamed Ariff
,
A. H.
,
Quah
,
H. J.
, and
Lim
,
W. F.
,
2015
, “
Effects of CNTs Content and Milling Time on Mechanical Behavior of MWCNT-Reinforced Aluminum Nanocomposites
,”
Mater. Chem. Phys.
,
166
, pp.
160
166
. 10.1016/j.matchemphys.2015.09.041
161.
Simões
,
S.
,
Viana
,
F.
,
Reis
,
M. A.
, and
Vieira
,
M. F.
,
2015
, “
Influence of Dispersion/Mixture Time on Mechanical Properties of Al–CNTs Nanocomposites
,”
Compos. Struct.
,
126
, pp.
114
122
. 10.1016/j.compstruct.2015.02.062
162.
Kwon
,
H.
, and
Leparoux
,
M.
,
2012
, “
Hot Extruded Carbon Nanotube Reinforced Aluminum Matrix Composite Materials
,”
Nanotechnology
,
23
(
41
), p.
415701
. 10.1088/0957-4484/23/41/415701
163.
Wu
,
J.
,
Zhang
,
H.
,
Zhang
,
Y.
, and
Wang
,
X.
,
2012
, “
Mechanical and Thermal Properties of Carbon Nanotube/Aluminum Composites Consolidated by Spark Plasma Sintering
,”
Mater. Des.
,
41
, pp.
344
348
. 10.1016/j.matdes.2012.05.014
164.
Nguyen
,
J.
,
Wen
,
H.
,
Zhang
,
Z.
,
Yaghmaie
,
F.
, and
Lavernia
,
E.
,
2014
, “
Surfactant Assisted Dispersion and Adhesion Behavior of Carbon Nanotubes on Cu–Zr and Cu–Zr–Al Amorphous Powders
,”
J. Mater. Sci. Technol.
,
30
(
9
), pp.
847
853
.
165.
He
,
C.
,
Zhao
,
N.
,
Shi
,
C.
,
Du
,
X.
,
Li
,
J.
,
Li
,
H.
, and
Cui
,
Q.
,
2007
, “
An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites
,”
Adv. Mater.
,
19
(
8
), pp.
1128
1132
. 10.1002/adma.200601381
166.
Nai
,
M. H.
,
Wei
,
J.
, and
Gupta
,
M.
,
2014
, “
Interface Tailoring to Enhance Mechanical Properties of Carbon Nanotube Reinforced Magnesium Composites
,”
Mater. Des.
,
60
, pp.
490
495
. 10.1016/j.matdes.2014.04.011
167.
Park
,
Y.
,
Cho
,
K.
,
Park
,
I.
, and
Park
,
Y.
,
2011
, “
Fabrication and Mechanical Properties of Magnesium Matrix Composite Reinforced With Si Coated Carbon Nanotubes
,”
Proc. Eng.
,
10
, pp.
1446
1450
. 10.1016/j.proeng.2011.04.240
168.
Li
,
H.-p.
,
Fan
,
J.-w.
,
Kang
,
J.-l.
,
Zhao
,
N.-q.
,
Wang
,
X.-x.
, and
Li
,
B.-e.
,
2014
, “
In-situ Homogeneous Synthesis of Carbon Nanotubes on Aluminum Matrix and Properties of Their Composites
,”
Trans. Nonferrous Met. Soc. China
,
24
(
7
), pp.
2331
2336
. 10.1016/S1003-6326(14)63353-7
169.
Chunfeng
,
D.
,
Zhang
,
X.
,
Yanxia
,
M.
, and
Dezun
,
W.
,
2007
, “
Fabrication of Aluminum Matrix Composite Reinforced With Carbon Nanotubes
,”
Rare Met.
,
26
(
5
), pp.
450
455
. 10.1016/S1001-0521(07)60244-7
170.
Esawi
,
A. M.
, and
El Borady
,
M. A.
,
2008
, “
Carbon Nanotube-Reinforced Aluminium Strips
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
486
492
. 10.1016/j.compscitech.2007.06.030
171.
Laha
,
T.
,
Chen
,
Y.
,
Lahiri
,
D.
, and
Agarwal
,
A.
,
2009
, “
Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming
,”
Compos. Part A: Appl. Sci. Manuf.
,
40
(
5
), pp.
589
594
. 10.1016/j.compositesa.2009.02.007
172.
Bakshi
,
S. R.
,
Singh
,
V.
,
Seal
,
S.
, and
Agarwal
,
A.
,
2009
, “
Aluminum Composite Reinforced With Multiwalled Carbon Nanotubes From Plasma Spraying of Spray Dried Powders
,”
Surf. Coat. Technol.
,
203
(
10–11
), pp.
1544
1554
. 10.1016/j.surfcoat.2008.12.004
173.
Daoush
,
W. M.
,
Lim
,
B. K.
,
Mo
,
C. B.
,
Nam
,
D. H.
, and
Hong
,
S. H.
,
2009
, “
Electrical and Mechanical Properties of Carbon Nanotube Reinforced Copper Nanocomposites Fabricated by Electroless Deposition Process
,”
Mater. Sci. Eng. A
,
513
, pp.
247
253
. 10.1016/j.msea.2009.01.073
174.
Kim
,
K. T.
,
Cha
,
S. I.
,
Hong
,
S. H.
, and
Hong
,
S. H.
,
2006
, “
Microstructures and Tensile Behavior of Carbon Nanotube Reinforced Cu Matrix Nanocomposites
,”
Mater. Sci. Eng. A
,
430
(
1–2
), pp.
27
33
. 10.1016/j.msea.2006.04.085
175.
Tu
,
J.
,
Yang
,
Y.
,
Wang
,
L.
,
Ma
,
X.
, and
Zhang
,
X.
,
2001
, “
Tribological Properties of Carbon-Nanotube-Reinforced Copper Composites
,”
Tribol. Lett.
,
10
(
4
), pp.
225
228
. 10.1023/A:1016662114589
176.
Vishwanath
,
K.
,
Raji
,
G.
,
Shakiba
,
A.
, and
Murthy
,
S. K.
,
2018
, “
Mechanical Properties of Copper Nanocomposites Reinforced With Uncoated and Nickel Coated Carbon Nanotubes
,”
FME Trans.
,
46
(
4
), pp.
623
630
. 10.5937/fmet1804623K
177.
Deng
,
H.
,
Yi
,
J.
,
Xia
,
C.
, and
Yi
,
Y.
,
2017
, “
Mechanical Properties and Microstructure Characterization of Well-Dispersed Carbon Nanotubes Reinforced Copper Matrix Composites
,”
J. Alloys Compd.
,
727
, pp.
260
268
. 10.1016/j.jallcom.2017.08.131
178.
Shen
,
G.-R.
,
Cheng
,
Y.-T.
, and
Tsai
,
L.-N.
,
2005
, “
Synthesis and Characterization of Ni-P-CNT's Nanocomposite Film for MEMS Applications
,”
IEEE Trans. Nanotechnol.
,
4
(
5
), pp.
539
547
. 10.1109/TNANO.2005.851397
179.
Nguyen
,
J.
,
Holland
,
T. B.
,
Wen
,
H.
,
Fraga
,
M.
,
Mukherjee
,
A.
, and
Lavernia
,
E.
,
2014
, “
Mechanical Behavior of Ultrafine-Grained Ni–Carbon Nanotube Composite
,”
J. Mater. Sci.
,
49
(
5
), pp.
2070
2077
. 10.1007/s10853-013-7897-1
180.
Li
,
C.
,
Wang
,
X.
,
Liu
,
W.
,
Wu
,
K.
,
Shi
,
H.
,
Ding
,
C.
,
Hu
,
X. S.
, and
Zheng
,
M. Y.
,
2014
, “
Microstructure and Strengthening Mechanism of Carbon Nanotubes Reinforced Magnesium Matrix Composite
,”
Mater. Sci. Eng. A
,
597
, pp.
264
269
. 10.1016/j.msea.2014.01.008
181.
Goh
,
C.
,
Wei
,
J.
,
Lee
,
L.
, and
Gupta
,
M.
,
2006
, “
Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium With Carbon Nanotubes
,”
Mater. Sci. Eng. A
,
423
(
1–2
), pp.
153
156
. 10.1016/j.msea.2005.10.071
182.
Zhou
,
M.
,
Qu
,
X.
,
Ren
,
L.
,
Fan
,
L.
,
Zhang
,
Y.
,
Guo
,
Y.
,
Quan
,
G.
,
Tang
,
Q.
,
Liu
,
B.
, and
Sun
,
H.
,
2017
, “
The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy
,”
Materials
,
10
(
12
), pp.
1385
. 10.3390/ma10121385
183.
Deng
,
C.
,
Ma
,
Y.
,
Zhang
,
P.
,
Zhang
,
X.
, and
Wang
,
D.
,
2008
, “
Thermal Expansion Behaviors of Aluminum Composite Reinforced With Carbon Nanotubes
,”
Mater. Lett.
,
62
(
15
), pp.
2301
2303
. 10.1016/j.matlet.2007.11.086
184.
Bonaccorso
,
F.
,
Colombo
,
L.
,
Yu
,
G.
,
Stoller
,
M.
,
Tozzini
,
V.
,
Ferrari
,
A. C.
,
Ruoff
,
R. S.
, and
Pellegrini
,
V.
,
2015
, “
Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage
,”
Science
,
347
(
6217
), p.
1246501
. 10.1126/science.1246501
185.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
. 10.1126/science.1157996
186.
Balandin
,
A. A.
,
2011
, “
Thermal Properties of Graphene and Nanostructured Carbon Materials
,”
Nat. Mater.
,
10
(
8
), p.
569
581
. 10.1038/nmat3064
187.
Potts
,
J. R.
,
Dreyer
,
D. R.
,
Bielawski
,
C. W.
, and
Ruoff
,
R. S.
,
2011
, “
Graphene-based Polymer Nanocomposites
,”
Polymer
,
52
(
1
), pp.
5
25
. 10.1016/j.polymer.2010.11.042
188.
Edwards
,
R. S.
, and
Coleman
,
K. S.
,
2013
, “
Graphene Synthesis: Relationship to Applications
,”
Nanoscale
,
5
(
1
), pp.
38
51
. 10.1039/C2NR32629A
189.
Zhu
,
Y.
,
Murali
,
S.
,
Cai
,
W.
,
Li
,
X.
,
Suk
,
J. W.
,
Potts
,
J. R.
, and
Ruoff
,
R. S.
,
2010
, “
Graphene and Graphene Oxide: Synthesis, Properties, and Applications
,”
Adv. Mater.
,
22
(
35
), pp.
3906
3924
. 10.1002/adma.201001068
190.
Novoselov
,
K. S.
,
Fal
,
V.
,
Colombo
,
L.
,
Gellert
,
P.
,
Schwab
,
M.
, and
Kim
,
K.
,
2012
, “
A Roadmap for Graphene
,”
Nature
,
490
(
7419
), p.
192
200
. 10.1038/nature11458
191.
Zhang
,
Y.
,
Mark
,
J. E.
,
Zhu
,
Y.
,
Ruoff
,
R. S.
, and
Schaefer
,
D. W.
,
2014
, “
Mechanical Properties of Polybutadiene Reinforced With Octadecylamine Modified Graphene Oxide
,”
Polymer
,
55
(
21
), pp.
5389
5395
. 10.1016/j.polymer.2014.08.065
192.
Wu
,
S.
,
Ladani
,
R. B.
,
Zhang
,
J.
,
Bafekrpour
,
E.
,
Ghorbani
,
K.
,
Mouritz
,
A. P.
,
Kinloch
,
A. J.
, and
Wang
,
C. H.
,
2015
, “
Aligning Multilayer Graphene Flakes With an External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites
,”
Carbon
,
94
, pp.
607
618
. 10.1016/j.carbon.2015.07.026
193.
Li
,
Z.
,
Chu
,
J.
,
Yang
,
C.
,
Hao
,
S.
,
Bissett
,
M. A.
,
Kinloch
,
I. A.
, and
Young
,
R. J.
,
2018
, “
Effect of Functional Groups on the Agglomeration of Graphene in Nanocomposites
,”
Compos. Sci. Technol.
,
163
, pp.
116
122
. 10.1016/j.compscitech.2018.05.016
194.
Kim
,
H.
, and
Macosko
,
C. W.
,
2009
, “
Processing-property Relationships of Polycarbonate/Graphene Composites
,”
Polymer
,
50
(
15
), pp.
3797
3809
. 10.1016/j.polymer.2009.05.038
195.
Kim
,
H.
, and
Macosko
,
C. W.
,
2008
, “
Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites
,”
Macromolecules
,
41
(
9
), pp.
3317
3327
. 10.1021/ma702385h
196.
Wakabayashi
,
K.
,
Pierre
,
C.
,
Dikin
,
D. A.
,
Ruoff
,
R. S.
,
Ramanathan
,
T.
,
Brinson
,
L. C.
, and
Torkelson
,
J. M.
,
2008
, “
Polymer−Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization
,”
Macromolecules
,
41
(
6
), pp.
1905
1908
. 10.1021/ma071687b
197.
Klüppel
,
M.
,
2003
, “The Role of Disorder in Filler Reinforcement of Elastomers on Various Length Scales,”
Filler-Reinforced Elastomers/Sanning Force Microscopy
,
B.
Capella
,
M.
Geuss
,
M.
Klüppel
,
M.
Munz
,
E.
Schulz
, and
H.
Sturm
, eds.,
Springer
,
New York
, pp.
1
86
.
198.
Paul
,
D.
, and
Robeson
,
L. M.
,
2008
, “
Polymer Nanotechnology: Nanocomposites
,”
Polymer
,
49
(
15
), pp.
3187
3204
. 10.1016/j.polymer.2008.04.017
199.
Schadler
,
L.
,
Giannaris
,
S. a.
, and
Ajayan
,
P.
,
1998
, “
Load Transfer in Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
,
73
(
26
), pp.
3842
3844
. 10.1063/1.122911
200.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2010
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
. 10.1002/smll.200901480
201.
Pötschke
,
P.
,
Abdel-Goad
,
M.
,
Pegel
,
S.
,
Jehnichen
,
D.
,
Mark
,
J. E.
,
Zhou
,
D.
, and
Heinrich
,
G.
,
2009
, “
Comparisons among Electrical and Rheological Properties of Melt-Mixed Composites Containing Various Carbon Nanostructures
,”
J. Macromol. Sci. Part A
,
47
(
1
), pp.
12
19
. 10.1080/10601320903394397
202.
Wei
,
J.
,
Atif
,
R.
,
Vo
,
T.
, and
Inam
,
F.
,
2015
, “
Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites
,”
J. Nanomater.
,
16
, pp.
374
.
203.
Li
,
Z.
,
Wang
,
R.
,
Young
,
R. J.
,
Deng
,
L.
,
Yang
,
F.
,
Hao
,
L.
,
Jiao
,
W.
, and
Liu
,
W.
,
2013
, “
Control of the Functionality of Graphene Oxide for Its Application in Epoxy Nanocomposites
,”
Polymer
,
54
(
23
), pp.
6437
6446
. 10.1016/j.polymer.2013.09.054
204.
Salom
,
C.
,
Prolongo
,
M.
,
Toribio
,
A.
,
Martínez-Martínez
,
A.
,
de Cárcer
,
I. A.
, and
Prolongo
,
S.
,
2018
, “
Mechanical Properties and Adhesive Behavior of Epoxy-Graphene Nanocomposites
,”
Int. J. Adhes. Adhes.
,
84
, pp.
119
125
. 10.1016/j.ijadhadh.2017.12.004
205.
Corcione
,
C. E.
,
Freuli
,
F.
, and
Maffezzoli
,
A.
,
2013
, “
The Aspect Ratio of Epoxy Matrix Nanocomposites Reinforced With Graphene Stacks
,”
Polym. Eng. Sci.
,
53
(
3
), pp.
531
539
. 10.1002/pen.23292
206.
Tang
,
L.-C.
,
Wan
,
Y.-J.
,
Yan
,
D.
,
Pei
,
Y.-B.
,
Zhao
,
L.
,
Li
,
Y.-B.
,
Wu
,
L.-B.
,
Jiang
,
J.-X.
, and
Lai
,
G.-Q.
,
2013
, “
The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites
,”
Carbon
,
60
, pp.
16
27
. 10.1016/j.carbon.2013.03.050
207.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
. 10.1021/nn9010472
208.
Wei
,
J.
, and
Inam
,
F.
,
2017
, “
Processing of Epoxy/Graphene Nanocomposites: Effects of Surfactants
,”
J. Polym. Sci. Appl.
,
1
(
1
), pp.
1
7
.
209.
Hong
,
N.
,
Zhan
,
J.
,
Wang
,
X.
,
Stec
,
A. A.
,
Hull
,
T. R.
,
Ge
,
H.
,
Xing
,
W.
,
Song
,
L.
, and
Hu
,
Y.
,
2014
, “
Enhanced Mechanical, Thermal and Flame Retardant Properties by Combining Graphene Nanosheets and Metal Hydroxide Nanorods for Acrylonitrile–Butadiene–Styrene Copolymer Composite
,”
Compos. Part A: Appl. Sci. Manuf.
,
64
, pp.
203
210
. 10.1016/j.compositesa.2014.04.015
210.
Potts
,
J. R.
,
Lee
,
S. H.
,
Alam
,
T. M.
,
An
,
J.
,
Stoller
,
M. D.
,
Piner
,
R. D.
, and
Ruoff
,
R. S.
,
2011
, “
Thermomechanical Properties of Chemically Modified Graphene/Poly (Methyl Methacrylate) Composites Made by In Situ Polymerization
,”
Carbon
,
49
(
8
), pp.
2615
2623
. 10.1016/j.carbon.2011.02.023
211.
Lago
,
E.
,
Toth
,
P. S.
,
Pugliese
,
G.
,
Pellegrini
,
V.
, and
Bonaccorso
,
F.
,
2016
, “
Solution Blending Preparation of Polycarbonate/Graphene Composite: Boosting the Mechanical and Electrical Properties
,”
RSC Adv.
,
6
(
100
), pp.
97931
97940
. 10.1039/C6RA21962D
212.
El Achaby
,
M.
, and
Qaiss
,
A.
,
2013
, “
Processing and Properties of Polyethylene Reinforced by Graphene Nanosheets and Carbon Nanotubes
,”
Mater. Des.
,
44
, pp.
81
89
.
213.
Kim
,
H.
,
Kobayashi
,
S.
,
AbdurRahim
,
M. A.
,
Zhang
,
M. J.
,
Khusainova
,
A.
,
Hillmyer
,
M. A.
,
Abdala
,
A. A.
, and
Macosko
,
C. W.
,
2011
, “
Graphene/Polyethylene Nanocomposites: Effect of Polyethylene Functionalization and Blending Methods
,”
Polymer
,
52
(
8
), pp.
1837
1846
. 10.1016/j.polymer.2011.02.017
214.
Piana
,
F.
, and
Pionteck
,
J.
,
2013
, “
Effect of the Melt Processing Conditions on the Conductive Paths Formation in Thermoplastic Polyurethane/Expanded Graphite (TPU/EG) Composites
,”
Compos. Sci. Technol.
,
80
, pp.
39
46
. 10.1016/j.compscitech.2013.03.002
215.
Zhao
,
X.
,
Zhang
,
Q.
,
Chen
,
D.
, and
Lu
,
P.
,
2010
, “
Enhanced Mechanical Properties of Graphene-Based Poly (Vinyl Alcohol) Composites
,”
Macromolecules
,
43
(
5
), pp.
2357
2363
. 10.1021/ma902862u
216.
Zaman
,
I.
,
Phan
,
T. T.
,
Kuan
,
H.-C.
,
Meng
,
Q.
,
La
,
L. T. B.
,
Luong
,
L.
,
Youssf
,
O.
, and
Ma
,
J.
,
2011
, “
Epoxy/Graphene Platelets Nanocomposites With Two Levels of Interface Strength
,”
Polymer
,
52
(
7
), pp.
1603
1611
. 10.1016/j.polymer.2011.02.003
217.
Leininger
,
W.
,
Wang
,
X.
, and
Tangpong
,
X.
,
2014
, “
Effects of MWCNT Reinforcement on Quasi-Static and Dynamic Tensile Properties of Epoxy
,”
J. Compos. Mater.
,
48
(
17
), pp.
2049
2057
. 10.1177/0021998313494102
218.
Domun
,
N.
,
Hadavinia
,
H.
,
Zhang
,
T.
,
Sainsbury
,
T.
,
Liaghat
,
G.
, and
Vahid
,
S.
,
2015
, “
Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials—A Review of the Current Status
,”
Nanoscale
,
7
(
23
), pp.
10294
10329
. 10.1039/C5NR01354B
219.
Rafiee
,
M. A.
,
Lu
,
W.
,
Thomas
,
A. V.
,
Zandiatashbar
,
A.
,
Rafiee
,
J.
,
Tour
,
J. M.
, and
Koratkar
,
N. A.
,
2010
, “
Graphene Nanoribbon Composites
,”
ACS Nano
,
4
(
12
), pp.
7415
7420
. 10.1021/nn102529n
220.
Wang
,
J.
,
Li
,
Z.
,
Fan
,
G.
,
Pan
,
H.
,
Chen
,
Z.
, and
Zhang
,
D.
,
2012
, “
Reinforcement With Graphene Nanosheets in Aluminum Matrix Composites
,”
Scr. Mater.
,
66
(
8
), pp.
594
597
. 10.1016/j.scriptamat.2012.01.012
221.
Pérez-Bustamante
,
R.
,
Bolaños-Morales
,
D.
,
Bonilla-Martínez
,
J.
,
Estrada-Guel
,
I.
, and
Martínez-Sánchez
,
R.
,
2014
, “
Microstructural and Hardness Behavior of Graphene-Nanoplatelets/Aluminum Composites Synthesized by Mechanical Alloying
,”
J. Alloys Compd.
,
615
, pp.
S578
S582
. 10.1016/j.jallcom.2014.01.225
222.
Ashwath
,
P.
, and
Xavior
,
M. A.
,
2014
, “
The Effect of Ball Milling & Reinforcement Percentage on Sintered Samples of Aluminium Alloy Metal Matrix Composites
,”
Proc. Eng.
,
97
, pp.
1027
1032
. 10.1016/j.proeng.2014.12.380
223.
Bartolucci
,
S. F.
,
Paras
,
J.
,
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Lee
,
S.
,
Kapoor
,
D.
, and
Koratkar
,
N.
,
2011
, “
Graphene–Aluminum Nanocomposites
,”
Mater. Sci. Eng. A
,
528
(
27
), pp.
7933
7937
. 10.1016/j.msea.2011.07.043
224.
Li
,
Z.
,
Fan
,
G.
,
Tan
,
Z.
,
Guo
,
Q.
,
Xiong
,
D.
,
Su
,
Y.
,
Li
,
Z.
, and
Zhang
,
D.
,
2014
, “
Uniform Dispersion of Graphene Oxide in Aluminum Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Aluminum Composites
,”
Nanotechnology
,
25
(
32
), pp.
325601
. 10.1088/0957-4484/25/32/325601
225.
Rashad
,
M.
,
Pan
,
F.
,
Tang
,
A.
,
Asif
,
M.
,
She
,
J.
,
Gou
,
J.
,
Mao
,
J.
, and
Hu
,
H.
,
2015
, “
Development of Magnesium-Graphene Nanoplatelets Composite
,”
J. Compos. Mater.
,
49
(
3
), pp.
285
293
. 10.1177/0021998313518360
226.
Kuang
,
D.
,
Xu
,
L.
,
Liu
,
L.
,
Hu
,
W.
, and
Wu
,
Y.
,
2013
, “
Graphene–Nickel Composites
,”
Appl. Surf. Sci.
,
273
, pp.
484
490
. 10.1016/j.apsusc.2013.02.066
227.
Zhai
,
W.
,
Shi
,
X.
,
Yao
,
J.
,
Ibrahim
,
A. M. M.
,
Xu
,
Z.
,
Zhu
,
Q.
,
Xiao
,
Y.
,
Chen
,
L.
, and
Zhang
,
Q.
,
2015
, “
Investigation of Mechanical and Tribological Behaviors of Multilayer Graphene Reinforced Ni3Al Matrix Composites
,”
Compos. Part B: Eng.
,
70
, pp.
149
155
. 10.1016/j.compositesb.2014.10.052
228.
Arsenault
,
R.
, and
Shi
,
N.
,
1986
, “
Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion
,”
Mater. Sci. Eng.
,
81
, pp.
175
187
. 10.1016/0025-5416(86)90261-2
229.
Rashad
,
M.
,
Pan
,
F.
, and
Asif
,
M.
,
2015
, “
Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets
,”
Mater. Sci. Eng.: A
,
630
, pp.
36
44
.
230.
Kumar
,
C. P.
,
Venkatesha
,
T.
, and
Shabadi
,
R.
,
2013
, “
Preparation and Corrosion Behavior of Ni and Ni–Graphene Composite Coatings
,”
Mater. Res. Bull.
,
48
(
4
), pp.
1477
1483
. 10.1016/j.materresbull.2012.12.064
231.
Ren
,
Z.
,
Meng
,
N.
,
Shehzad
,
K.
,
Xu
,
Y.
,
Qu
,
S.
,
Yu
,
B.
, and
Luo
,
J. K.
,
2015
, “
Mechanical Properties of Nickel-Graphene Composites Synthesized by Electrochemical Deposition
,”
Nanotechnology
,
26
(
6
), pp.
065706
. 10.1088/0957-4484/26/6/065706
232.
Lin
,
D.
,
Liu
,
C. R.
, and
Cheng
,
G. J.
,
2014
, “
Single-layer Graphene Oxide Reinforced Metal Matrix Composites by Laser Sintering: Microstructure and Mechanical Property Enhancement
,”
Acta Mater.
,
80
, pp.
183
193
. 10.1016/j.actamat.2014.07.038
233.
Bastwros
,
M.
,
Kim
,
G.-Y.
,
Zhang
,
K.
, and
Wang
,
S.
,
2013
, “
Fabrication of Graphene Reinforced Aluminum Composite by Semi-Solid Processing
,”
ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov.15–21
, p. V02BT02A030.
234.
Song
,
Y.
,
Liu
,
W.
, and
Chen
,
Y.
,
2017
, “
Strengthening in a Copper Composite Containing Graphene Nanofillers
,”
AMRA 2016
,
Guangzhou, China
,
Dec. 18–21, 2016
, p.
012017
.
235.
Chen
,
L.-Y.
,
Konishi
,
H.
,
Fehrenbacher
,
A.
,
Ma
,
C.
,
Xu
,
J.-Q.
,
Choi
,
H.
,
Xu
,
H.-F.
,
Pfefferkorn
,
F. E.
, and
Li
,
X.-C.
,
2012
, “
Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites
,”
Scr. Mater.
,
67
(
1
), pp.
29
32
. 10.1016/j.scriptamat.2012.03.013
236.
Hwang
,
J.
,
Yoon
,
T.
,
Jin
,
S. H.
,
Lee
,
J.
,
Kim
,
T. S.
,
Hong
,
S. H.
, and
Jeon
,
S.
,
2013
, “
Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process
,”
Adv. Mater.
,
25
(
46
), pp.
6724
6729
. 10.1002/adma.201302495
237.
Tang
,
Y.
,
Yang
,
X.
,
Wang
,
R.
, and
Li
,
M.
,
2014
, “
Enhancement of the Mechanical Properties of Graphene–Copper Composites With Graphene–Nickel Hybrids
,”
Mater. Sci. Eng. A
,
599
, pp.
247
254
. 10.1016/j.msea.2014.01.061
238.
Lim
,
B.
,
Kim
,
C.-j.
,
Kim
,
B.
,
Shim
,
U.
,
Oh
,
S.
,
Sung
,
B.-h.
,
Choi
,
J.-h.
, and
Baik
,
S.
,
2006
, “
The Effects of Interfacial Bonding on Mechanical Properties of Single-Walled Carbon Nanotube Reinforced Copper Matrix Nanocomposites
,”
Nanotechnology
,
17
(
23
), pp.
5759
5764
. 10.1088/0957-4484/17/23/008
239.
Xu
,
Z.
, and
Buehler
,
M. J.
,
2010
, “
Interface Structure and Mechanics Between Graphene and Metal Substrates: A First-Principles Study
,”
J. Phys.: Condens. Matter
,
22
(
48
), p.
485301
. 10.1088/0953-8984/22/48/485301
240.
Rashad
,
M.
,
Pan
,
F.
,
Tang
,
A.
,
Lu
,
Y.
,
Asif
,
M.
,
Hussain
,
S.
,
She
,
J.
,
Gou
,
J.
, and
Mao
,
J.
,
2013
, “
Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys
,”
J. Magnesium Alloys
,
1
(
3
), pp.
242
248
. 10.1016/j.jma.2013.09.004
241.
Yan
,
S. J.
,
Yang
,
C.
,
Hong
,
Q. H.
,
Chen
,
J.-z.
,
Liu
,
D. B.
, and
Dai
,
S. L.
,
2011
, “
Research of Graphene-Reinforced Aluminum Matrix Nanocomposites
,”
J. Mater. Eng.
,
1
(
4
), pp.
1
6
.
242.
Jeon
,
C.-H.
,
Jeong
,
Y.-H.
,
Seo
,
J.-J.
,
Tien
,
H. N.
,
Hong
,
S.-T.
,
Yum
,
Y.-J.
,
Hur
,
S.-H.
, and
Lee
,
K.-J.
,
2014
, “
Material Properties of Graphene/Aluminum Metal Matrix Composites Fabricated by Friction Stir Processing
,”
Int. J. Precis. Eng. Manuf.
,
15
(
6
), pp.
1235
1239
. 10.1007/s12541-014-0462-2
243.
Li
,
J.
,
Xiong
,
Y.
,
Wang
,
X.
,
Yan
,
S.
,
Yang
,
C.
,
He
,
W.
,
Chen
,
J. Z.
,
Wang
,
S. Q.
,
Zhang
,
X. Y.
, and
Dai
,
S. L.
,
2015
, “
Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling
,”
Mater. Sci. Eng. A
,
626
, pp.
400
405
. 10.1016/j.msea.2014.12.102
244.
Koltsova
,
T. S.
,
Nasibulina
,
L. I.
,
Anoshkin
,
I. V.
,
Mishin
,
V. V.
,
Kauppinen
,
E. I.
,
Tolochko
,
O. V.
, and
Nasibulin
,
A. G.
,
2012
, “
New Hybrid Copper Composite Materials Based on Carbon Nanostructures
,”
J. Mater. Sci. Eng. B
,
2
(
4
), pp.
240
246
.
245.
Pavithra
,
C. L.
,
Sarada
,
B. V.
,
Rajulapati
,
K. V.
,
Rao
,
T. N.
, and
Sundararajan
,
G.
,
2014
, “
A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils With High Hardness
,”
Sci. Rep.
,
4
(
1
), p.
4049
. 10.1038/srep04049
246.
Li
,
M.
,
Che
,
H.
,
Liu
,
X.
,
Liang
,
S.
, and
Xie
,
H.
,
2014
, “
Highly Enhanced Mechanical Properties in Cu Matrix Composites Reinforced With Graphene Decorated Metallic Nanoparticles
,”
J. Mater. Sci.
,
49
(
10
), pp.
3725
3731
. 10.1007/s10853-014-8082-x
247.
Xiong
,
D.-B.
,
Cao
,
M.
,
Guo
,
Q.
,
Tan
,
Z.
,
Fan
,
G.
,
Li
,
Z.
, and
Zhang
,
D.
,
2015
, “
Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite
,”
ACS Nano
,
9
(
7
), pp.
6934
6943
. 10.1021/acsnano.5b01067
248.
Zhao
,
C.
, and
Wang
,
J.
,
2014
, “
Fabrication and Tensile Properties of Graphene/Copper Composites Prepared by Electroless Plating for Structrual Applications
,”
Phys. Status Solidi (a)
,
211
(
12
), pp.
2878
2885
. 10.1002/pssa.201431478
249.
Rashad
,
M.
,
Pan
,
F.
,
Asif
,
M.
, and
Tang
,
A.
,
2014
, “
Powder Metallurgy of Mg–1% Al–1% Sn Alloy Reinforced With Low Content of Graphene Nanoplatelets (GNPs)
,”
J. Ind. Eng. Chem.
,
20
(
6
), pp.
4250
4255
. 10.1016/j.jiec.2014.01.028
250.
Giannelis
,
E. P.
,
1992
, “
A new Strategy for Synthesizing Polymer-Ceramic Nanocomposites
,”
JOM
,
44
(
3
), pp.
28
30
. 10.1007/BF03222789
251.
Kojima
,
Y.
,
Usuki
,
A.
,
Kawasumi
,
M.
,
Okada
,
A.
,
Kurauchi
,
T.
, and
Kamigaito
,
O.
,
1993
, “
Sorption of Water in Nylon 6-Clay Hybrid
,”
J. Appl. Polym. Sci.
,
49
(
7
), pp.
1259
1264
. 10.1002/app.1993.070490715
252.
Vaia
,
R. A.
,
Ishii
,
H.
, and
Giannelis
,
E. P.
,
1993
, “
Synthesis and Properties of Two-Dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates
,”
Chem. Mater.
,
5
(
12
), pp.
1694
1696
. 10.1021/cm00036a004
253.
Messersmith
,
P. B.
, and
Giannelis
,
E. P.
,
1994
, “
Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites
,”
Chem. Mater.
,
6
(
10
), pp.
1719
1725
. 10.1021/cm00046a026
254.
Biasci
,
L.
,
Aglietto
,
M.
,
Ruggeri
,
G.
, and
Ciardelli
,
F.
,
1994
, “
Functionalization of Montmorillonite by Methyl Methacrylate Polymers Containing Side-Chain Ammonium Cations
,”
Polymer
,
35
(
15
), pp.
3296
3304
. 10.1016/0032-3861(94)90138-4
255.
Jimenez
,
G.
,
Ogata
,
N.
,
Kawai
,
H.
, and
Ogihara
,
T.
,
1997
, “
Structure and Thermal/Mechanical Properties of Poly (ɛ-Caprolactone)-Clay Blend
,”
J. Appl. Polym. Sci.
,
64
(
11
), pp.
2211
2220
.
256.
Kurokawa
,
Y.
,
Yasuda
,
H.
,
Kashiwagi
,
M.
, and
Oyo
,
A.
,
1997
, “
Structure and Properties of a Montmorillonite/Polypropylene Nanocomposite
,”
J. Mater. Sci. Lett.
,
16
(
20
), pp.
1670
1672
. 10.1023/A:1018526131023
257.
Wang
,
Z.
, and
Pinnavaia
,
T. J.
,
1998
, “
Nanolayer Reinforcement of Elastomeric Polyurethane
,”
Chem. Mater.
,
10
(
12
), pp.
3769
3771
. 10.1021/cm980448n
258.
Zhu
,
Z. K.
,
Yang
,
Y.
,
Yin
,
J.
,
Wang
,
X. Y.
,
Ke
,
Y. C.
, and
Qi
,
Z. N.
,
1999
, “
Preparation and Properties of Organosoluble Montmorillonite/Polyimide Hybrid Materials
,”
J. Appl. Polym. Sci.
,
73
(
11
), pp.
2063
2068
.
259.
Agubra
,
V.
,
Owuor
,
P.
, and
Hosur
,
M.
,
2013
, “
Influence of Nanoclay Dispersion Methods on the Mechanical Behavior of E-Glass/Epoxy Nanocomposites
,”
Nanomaterials
,
3
(
3
), pp.
550
563
. 10.3390/nano3030550
260.
Choi
,
R. N.
,
Cheigh
,
C. I.
,
Lee
,
S. Y.
, and
Chung
,
M. S.
,
2011
, “
Preparation and Properties of Polypropylene/Clay Nanocomposites for Food Packaging
,”
J. Food Sci.
,
76
(
8
), pp.
N62
N67
. 10.1111/j.1750-3841.2011.02351.x
261.
Wang
,
L.
,
Wang
,
K.
,
Chen
,
L.
,
Zhang
,
Y.
, and
He
,
C.
,
2006
, “
Preparation, Morphology and Thermal/Mechanical Properties of Epoxy/Nanoclay Composite
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
11
), pp.
1890
1896
. 10.1016/j.compositesa.2005.12.020
262.
Peeterbroeck
,
S.
,
Alexandre
,
M.
,
Jérôme
,
R.
, and
Dubois
,
P.
,
2005
, “
Poly (Ethylene-co-Vinyl Acetate)/Clay Nanocomposites: Effect of Clay Nature and Organic Modifiers on Morphology, Mechanical and Thermal Properties
,”
Polym. Degrad. Stab.
,
90
(
2
), pp.
288
294
. 10.1016/j.polymdegradstab.2005.03.023
263.
Abbasi
,
S.
,
Carreau
,
P. J.
,
Derdouri
,
A.
, and
Moan
,
M.
,
2009
, “
Rheological Properties and Percolation in Suspensions of Multiwalled Carbon Nanotubes in Polycarbonate
,”
Rheol. Acta
,
48
(
9
), p.
943
959
. 10.1007/s00397-009-0375-7
264.
Khalaj
,
M.-J.
,
Ahmadi
,
H.
,
Lesankhosh
,
R.
, and
Khalaj
,
G.
,
2016
, “
Study of Physical and Mechanical Properties of Polypropylene Nanocomposites for Food Packaging Application: Nano-Clay Modified With Iron Nanoparticles
,”
Trends Food Sci. Technol.
,
51
, pp.
41
48
. 10.1016/j.tifs.2016.03.007
265.
Fornes
,
T.
,
Yoon
,
P.
,
Keskkula
,
H.
, and
Paul
,
D.
,
2001
, “
Nylon 6 Nanocomposites: The Effect of Matrix Molecular Weight
,”
Polymer
,
42
(
25
), pp.
09929
09940
. 10.1016/S0032-3861(01)00552-3
266.
Finnigan
,
B.
,
Martin
,
D.
,
Halley
,
P.
,
Truss
,
R.
, and
Campbell
,
K.
,
2004
, “
Morphology and Properties of Thermoplastic Polyurethane Nanocomposites Incorporating Hydrophilic Layered Silicates
,”
Polymer
,
45
(
7
), pp.
2249
2260
. 10.1016/j.polymer.2004.01.049
267.
Zamanian
,
M.
,
Mortezaei
,
M.
,
Salehnia
,
B.
, and
Jam
,
J.
,
2013
, “
Fracture Toughness of Epoxy Polymer Modified With Nanosilica Particles: Particle Size Effect
,”
Eng. Fract. Mech.
,
97
, pp.
193
206
. 10.1016/j.engfracmech.2012.10.027
268.
Johnsen
,
B.
,
Kinloch
,
A.
,
Mohammed
,
R.
,
Taylor
,
A.
, and
Sprenger
,
S.
,
2007
, “
Toughening Mechanisms of Nanoparticle-Modified Epoxy Polymers
,”
Polymer
,
48
(
2
), pp.
530
541
. 10.1016/j.polymer.2006.11.038
269.
Svoboda
,
P.
,
Zeng
,
C.
,
Wang
,
H.
,
Lee
,
L. J.
, and
Tomasko
,
D. L.
,
2002
, “
Morphology and Mechanical Properties of Polypropylene/Organoclay Nanocomposites
,”
J. Appl. Polym. Sci.
,
85
(
7
), pp.
1562
1570
. 10.1002/app.10789
270.
Singh
,
S. K.
,
Kumar
,
A.
, and
Jain
,
A.
,
2018
, “
Improving Tensile and Flexural Properties of SiO2-Epoxy Polymer Nanocomposite
,”
Mater. Today: Proc.
,
5
(
2
), pp.
6339
6344
. 10.1016/j.matpr.2017.12.243
271.
Hsieh
,
T.
,
Kinloch
,
A.
,
Masania
,
K.
,
Taylor
,
A.
, and
Sprenger
,
S.
,
2010
, “
The Mechanisms and Mechanics of the Toughening of Epoxy Polymers Modified With Silica Nanoparticles
,”
Polymer
,
51
(
26
), pp.
6284
6294
. 10.1016/j.polymer.2010.10.048
272.
Blackman
,
B.
,
Kinloch
,
A.
,
Lee
,
J. S.
,
Taylor
,
A.
,
Agarwal
,
R.
,
Schueneman
,
G.
, and
Sprenger
,
S.
,
2007
, “
The Fracture and Fatigue Behaviour of Nano-Modified Epoxy Polymers
,”
J. Mater. Sci.
,
42
(
16
), pp.
7049
7051
. 10.1007/s10853-007-1768-6
273.
Eustathopoulos
,
N.
,
Nicholas
,
M. G.
, and
Drevet
,
B.
,
1999
,
Wettability at High Temperatures
, Vol.
3
,
Elsevier
,
New York
.
274.
Aikin
,
R.
,
1997
, “
The Mechanical Properties of in-Situ Composites
,”
JOM
,
49
(
8
), p.
35
39
. 10.1007/BF02914400
275.
Zhao
,
Y.-T.
,
Zhang
,
S.-L.
,
Chen
,
G.
,
Cheng
,
X.-N.
, and
Wang
,
C.-Q.
,
2008
, “
In Situ (Al2O3+ Al3Zr)np/Al Nanocomposites Synthesized by Magneto-Chemical Melt Reaction
,”
Compos. Sci. Technol.
,
68
(
6
), pp.
1463
1470
. 10.1016/j.compscitech.2007.10.036
276.
Stinton
,
D.P.
,
Besmann
,
T.M.
, and
Lowden
,
R.A.
,
1988
, “
Chemical Vapor Deposition Techniques
,”
MRS Bulletin
,
13
(
11
), pp.
45
51
.
277.
Tjong
,
S.
, and
Chen
,
H.
,
2004
, “
Nanocrystalline Materials and Coatings
,”
Mater. Sci. Eng.: R: Rep.
,
45
(
1–2
), pp.
1
88
. 10.1016/j.mser.2004.07.001
278.
Alexandrescu
,
R.
,
Borsella
,
E.
,
Botti
,
S.
,
Cesile
,
M.
,
Martelli
,
S.
,
Giorgi
,
R.
,
TURTU
S
,
ZAPPA
G
,
1997
, “
Synthesis of TiC and SiC/TiC Nanocrystalline Powders by Gas-Phase Laser-Induced Reaction
,”
J. Mater. Sci.
,
32
(
21
), pp.
5629
5635
. 10.1023/A:1018640911556
279.
Koli
,
D. K.
,
Agnihotri
,
G.
, and
Purohit
,
R.
,
2013
, “
Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes
,”
Int. J. Latest Trends Eng. Technol.
,
2
(
4
), pp.
486
496
.
280.
Sajjadi
,
S. A.
, and
Zebarjad
,
S. M.
,
2008
, “
Synthesis of Al-Al2O3 Nano-Composite by Mechanical Alloying and Evaluation of the Effect of Ball Milling Time on the Microstructure and Mechanical Properties
,”
ICMN08.
,
Kuala Lumpur, Malaysia
,
May 13–15
.
281.
Zeng
,
X.
,
Liu
,
W.
,
Xu
,
B.
,
Shu
,
G.
, and
Li
,
Q.
,
2018
, “
Microstructure and Mechanical Properties of Al–SiC Nanocomposites Synthesized by Surface-Modified Aluminium Powder
,”
Metals
,
8
(
4
), p.
253
. 10.3390/met8040253
282.
Kang
,
Y.-C.
, and
Chan
,
S. L.-I.
,
2004
, “
Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites
,”
Mater. Chem. Phys.
,
85
(
2–3
), pp.
438
443
. 10.1016/j.matchemphys.2004.02.002
283.
Jia
,
D.
,
2000
, “
Influence of SiC Particulate Size on the Microstructural Evolution and Mechanical Properties of Al–6Ti–6Nb Matrix Composites
,”
Mater. Sci. Eng. A
,
289
(
1–2
), pp.
83
90
. 10.1016/S0921-5093(00)00897-2
284.
Tang
,
F.
,
Hagiwara
,
M.
, and
Schoenung
,
J. M.
,
2005
, “
Microstructure and Tensile Properties of Bulk Nanostructured Al-5083/SiCp Composites Prepared by Cryomilling
,”
Mater. Sci. Eng. A
,
407
(
1–2
), pp.
306
314
. 10.1016/j.msea.2005.07.056
285.
Hsu
,
C.
,
Chang
,
C.
,
Kao
,
P.
,
Ho
,
N.
, and
Chang
,
C.
,
2006
, “
Al–Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing
,”
Acta Mater.
,
54
(
19
), pp.
5241
5249
. 10.1016/j.actamat.2006.06.054
286.
Rai
,
R.
,
Saha
,
S.
,
Datta
,
G.
, and
Chakraborty
,
M.
,
2016
, “
Studies on Synthesis of In-Situ Al-TiC Metal Matrix Composites
,”
ICASP-4
,
Windsor, UK
,
July 8–11, 2014
, p.
012042
.
287.
Poovazhagan
,
L.
,
Kalaichelvan
,
K.
, and
Rajadurai
,
A.
,
2014
, “
Preparation of SiC Nano-Particulates Reinforced Aluminum Matrix Nanocomposites by High Intensity Ultrasonic Cavitation Process
,”
Trans. Indian Inst. Met.
,
67
(
2
), pp.
229
237
. 10.1007/s12666-013-0340-0
288.
Wong
,
W. E.
, and
Gupta
,
M.
,
2006
, “
Simultaneously Improving Strength and Ductility of Magnesium Using Nano-Size SiC Particulates and Microwaves
,”
Adv. Eng. Mater.
,
8
(
8
), pp.
735
740
. 10.1002/adem.200500209
289.
Cao
,
G.
,
Kobliska
,
J.
,
Konishi
,
H.
, and
Li
,
X.
,
2008
, “
Tensile Properties and Microstructure of SiC Nanoparticle–Reinforced Mg-4Zn Alloy Fabricated by Ultrasonic Cavitation–Based Solidification Processing
,”
Metall. Mater. Trans. A
,
39
(
4
), pp.
880
886
. 10.1007/s11661-007-9453-6
290.
Ferkel
,
H.
, and
Mordike
,
B.
,
2001
, “
Magnesium Strengthened by SiC Nanoparticles
,”
Mater. Sci. Eng. A
,
298
(
1–2
), pp.
193
199
. 10.1016/S0921-5093(00)01283-1
291.
Vanarotti
,
M.
,
Shrishail
,
P.
,
Sridhar
,
B.R.
,
Venkateswarlu
,
K.
, and
Kori
,
S.A.
,
2014
, “
Synthesis and Characterization of Aluminium Alloy A356 and Silicon Carbide Metal Matrix Composite
,”
Procedia Materials Science
,
5
, pp.
873
882
.
292.
Boopathi
,
M. M.
,
Arulshri
,
K.
, and
Iyandurai
,
N.
,
2013
, “
Evaluation of Mechanical Properties of Aluminium Alloy 2024 Reinforced With Silicon Carbide and Fly Ash Hybrid Metal Matrix Composites
,”
Am. J. Appl. Sci.
,
10
(
3
), p.
219
229
. 10.3844/ajassp.2013.219.229
293.
Yang
,
Y.
,
Lan
,
J.
, and
Li
,
X.
,
2004
, “
Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy
,”
Mater. Sci. Eng. A
,
380
(
1–2
), pp.
378
383
. 10.1016/j.msea.2004.03.073
294.
Kumar
,
N. R.
, and
Dwarakadasa
,
E.
,
2000
, “
Effect of Matrix Strength on the Mechanical Properties of Al–Zn–Mg/SiCP Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
31
(
10
), pp.
1139
1145
.
295.
Lee
,
C.
,
Huang
,
J.
, and
Hsieh
,
P.
,
2006
, “
Mg Based Nano-Composites Fabricated by Friction Stir Processing
,”
Scr. Mater.
,
54
(
7
), pp.
1415
1420
. 10.1016/j.scriptamat.2005.11.056
You do not currently have access to this content.