Abstract

Micromachining of nanocomposites is deemed to be a complicated process due to the anisotropic, heterogeneous structure and advanced mechanical properties of these materials associated with the size effects in micromachining. It leads to poorer machinability in terms of high cutting force, low surface quality, and high rate of tool wear. A comprehensive review on mechanical properties of nanocomposites aiming to pointout their effects on micro-machinability has been addressed in part 1. In part 2, the subsequent micro-machining processes are critically discussed based on relevant studies from both experimental and modeling approaches. The main findings and limitations of these micro-machining methods in processing nanocomposites have been highlighted together with future prospects.

References

1.
Taniguchi
,
N.
,
1983
, “
Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing
,”
CIRP Ann.-Manuf. Technol.
,
32
(
2
), pp.
573
582
. 10.1016/S0007-8506(07)60185-1
2.
Byrne
,
G.
,
Dornfeld
,
D.
, and
Denkena
,
B.
,
2003
, “
Advancing Cutting Technology
,”
CIRP Ann.-Manuf. Technol.
,
52
(
2
), pp.
483
507
. 10.1016/S0007-8506(07)60200-5
3.
Rajurkar
,
K. P.
,
1994
, “Nontraditional Manufacturing Processes,”
Handbook of Design, Manufacturing and Automation
,
R. C.
Dorf
, and
A.
Kusiak
, eds.,
Wiley and Sons
,
United States
, pp.
211
241
.
4.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M.
,
2006
, “
Chip Formation During Microscale Cutting of a Medium Carbon Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
467
481
. 10.1016/j.ijmachtools.2005.07.019
5.
Masuzawa
,
T.
, and
Tönshoff
,
H.
,
1997
, “
Three-dimensional Micromachining by Machine Tools
,”
CIRP Ann.-Manuf. Technol.
,
46
(
2
), pp.
621
628
. 10.1016/S0007-8506(07)60882-8
6.
Chae
,
J.
,
Park
,
S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
. 10.1016/j.ijmachtools.2005.05.015
7.
Huo
,
D.
,
2013
,
Micro-Cutting: Fundamentals and Applications
,
John Wiley & Sons
,
New York
.
8.
Mian
,
A.
,
Driver
,
N.
, and
Mativenga
,
P.
,
2011
, “
Identification of Factors That Dominate Size Effect in Micro-Machining
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
383
394
. 10.1016/j.ijmachtools.2011.01.004
9.
Sun
,
X.
, and
Cheng
,
K.
,
2010
, “Micro-/Nano-Machining Through Mechanical Cutting,”
Micromanuf. Eng. Technol.
, 1st ed.,
Y.
Qin
, ed.,
Elsvier
,
New York
, pp.
24
38
. 10.1016/B978-0-8155-1545-6.00002-8
10.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.-Manuf. Technol.
,
55
(
2
), pp.
745
768
. 10.1016/j.cirp.2006.10.006
11.
Shaw
,
M. C.
,
2003
, “
The Size Effect in Metal Cutting
,”
Sadhana
,
28
(
5
), pp.
875
896
. 10.1007/BF02703319
12.
Câmara
,
M.
,
Rubio
,
J. C.
,
Abrão
,
A.
, and
Davim
,
J.
,
2012
, “
State of the Art on Micromilling of Materials, A Review
,”
J. Mater. Sci. Technol.
,
28
(
8
), pp.
673
685
. 10.1016/S1005-0302(12)60115-7
13.
Vollertsen
,
F.
,
2008
, “
Categories of Size Effects
,”
Prod. Eng.
,
2
(
4
), pp.
377
383
. 10.1007/s11740-008-0127-z
14.
Kang
,
I.
,
Kim
,
J.
, and
Seo
,
Y.
,
2011
, “
Investigation of Cutting Force Behaviour Considering the Effect of Cutting Edge Radius in the Micro-Scale Milling of AISI 1045 Steel
,”
Proc. Inst. Mech. Eng. B
,
225
(
2
), pp.
163
171
. 10.1243/09544054JEM1762
15.
de Oliveira
,
F. B.
,
Rodrigues
,
A. R.
,
Coelho
,
R. T.
, and
de Souza
,
A. F.
,
2015
, “
Size Effect and Minimum Chip Thickness in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
39
54
. 10.1016/j.ijmachtools.2014.11.001
16.
Aramcharoen
,
A.
, and
Mativenga
,
P.
,
2009
, “
Size Effect and Tool Geometry in Micromilling of Tool Steel
,”
Precis. Eng.
,
33
(
4
), pp.
402
407
. 10.1016/j.precisioneng.2008.11.002
17.
Lu
,
X.
,
Jia
,
Z.
,
Liu
,
S.
,
Yang
,
K.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2019
, “
Chatter Stability of Micro-Milling by Considering the Centrifugal Force and Gyroscopic Effect of the Spindle
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111003
. 10.1115/1.4044520
18.
Weule
,
H.
,
Hüntrup
,
V.
, and
Tritschler
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.-Manuf. Technol.
,
50
(
1
), pp.
61
64
. 10.1016/S0007-8506(07)62071-X
19.
Moriwaki
,
T.
,
1989
, “
Machinability of Copper in Ultra-Precision Micro Diamond Cutting
,”
CIRP Ann.-Manuf. Technol.
,
38
(
1
), pp.
115
118
. 10.1016/S0007-8506(07)62664-X
20.
Yuan
,
Z.
,
Lee
,
W.
,
Yao
,
Y.
, and
Zhou
,
M.
,
1994
, “
Effect of Crystallographic Orientation on Cutting Forces and Surface Quality in Diamond Cutting of Single Crystal
,”
CIRP Ann.-Manuf. Technol.
,
43
(
1
), pp.
39
42
. 10.1016/S0007-8506(07)62159-3
21.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-level Force Prediction Model for Micro-Milling of Multi-phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
202
209
. 10.1115/1.1556402
22.
Venkatachalam
,
S.
,
Fergani
,
O.
,
Li
,
X.
,
Yang
,
J. G.
,
Chiang
,
K.-N.
, and
Liang
,
S. Y.
,
2015
, “
Microstructure Effects on Cutting Forces and Flow Stress in Ultra-Precision Machining of Polycrystalline Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021020
. 10.1115/1.4029648
23.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
, and
Uchikoshi
,
J.
,
1994
, “
Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis
,”
CIRP Ann.-Manuf. Technol.
,
43
(
1
), pp.
51
54
. 10.1016/S0007-8506(07)62162-3
24.
Furukawa
,
Y.
, and
Moronuki
,
N.
,
1988
, “
Effect of Material Properties on Ultra Precise Cutting Processes
,”
CIRP Ann.-Manuf. Technol.
,
37
(
1
), pp.
113
116
. 10.1016/S0007-8506(07)61598-4
25.
Mian
,
A. J.
,
Driver
,
N.
, and
Mativenga
,
P. T.
,
2010
, “
A Comparative Study of Material Phase Effects on Micro-Machinability of Multiphase Materials
,”
Int. J. Adv. Manuf. Technol.
,
50
(
1–4
), pp.
163
174
. 10.1007/s00170-009-2506-9
26.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M.
,
2006
, “
Surface Defects During Microcutting
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1378
1387
. 10.1016/j.ijmachtools.2005.10.001
27.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
685
694
. 10.1115/1.1813470
28.
Uhlmann
,
E.
,
Piltz
,
S.
, and
Schauer
,
K.
,
2005
, “
Micro Milling of Sintered Tungsten–Copper Composite Materials
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
402
407
. 10.1016/j.jmatprotec.2005.05.022
29.
Popov
,
K. B.
,
Dimov
,
S. S.
,
Pham
,
D. T.
,
Minev
,
R.
,
Rosochowski
,
A.
, and
Olejnik
,
L.
,
2006
, “
Micromilling: Material Microstructure Effects
,”
Proc. Inst. Mech. Eng. B
,
220
(
11
), pp.
1807
1813
. 10.1243/09544054JEM683
30.
Lauro
,
C. H.
,
Ribeiro Filho
,
S. L. M.
,
Christoforo
,
A. L.
, and
Brandão
,
L. C.
,
2014
, “
Influence of the Austenite Grain Size Variation on the Surface Finishing in the Micromilling Process of the Hardened AISI H13steel
,”
Matéria (Rio de Janeiro)
,
19
(
3
), pp.
235
246
. 10.1590/S1517-70762014000300007
31.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L.
,
2000
, “
MD Simulation of Nanometric Cutting of Single Crystal Aluminum–Effect of Crystal Orientation and Direction of Cutting
,”
Wear
,
242
(
1–2
), pp.
60
88
. 10.1016/S0043-1648(00)00389-6
32.
To
,
S.
,
Lee
,
W.
, and
Chan
,
C.
,
1997
, “
Ultraprecision Diamond Turning of Aluminium Single Crystals
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
157
162
. 10.1016/S0924-0136(96)02617-9
33.
Zhou
,
M.
, and
Ngoi
,
B.
,
2001
, “
Effect of Tool and Workpiece Anisotropy on Microcutting Processes
,”
Proc. Inst. Mech. Eng. B
,
215
(
1
), pp.
13
19
. 10.1243/0954405011515091
34.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S.
, and
Ehmann
,
K.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
. 10.1115/1.1813469
35.
Ng
,
C. K.
,
Melkote
,
S. N.
,
Rahman
,
M.
, and
Kumar
,
A. S.
,
2006
, “
Experimental Study of Micro-and Nano-Scale Cutting of Aluminum 7075-T6
,”
Int. J. Mach. Tools Manuf.
,
46
(
9
), pp.
929
936
. 10.1016/j.ijmachtools.2005.08.004
36.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2013
, “
Chip Formation in Micro-Cutting
,”
J. Mech. Eng. Autom.
,
3
, pp.
441
448
.
37.
Woon
,
K.
, and
Rahman
,
M.
,
2010
, “
Extrusion-like Chip Formation Mechanism and Its Role in Suppressing Void Nucleation
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
129
132
. 10.1016/j.cirp.2010.03.094
38.
Ikawa
,
N.
,
Shimada
,
S.
, and
Tanaka
,
H.
,
1992
, “
Minimum Thickness of Cut in Micromachining
,”
Nanotechnology
,
3
(
1
), pp.
6
9
. 10.1088/0957-4484/3/1/002
39.
Malekian
,
M.
,
Mostofa
,
M.
,
Park
,
S.
, and
Jun
,
M.
,
2012
, “
Modeling of Minimum Uncut Chip Thickness in Micro Machining of Aluminum
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
553
559
. 10.1016/j.jmatprotec.2011.05.022
40.
Liu
,
K.
, and
Melkote
,
S. N.
,
2007
, “
Finite Element Analysis of the Influence of Tool Edge Radius on Size Effect in Orthogonal Micro-Cutting Process
,”
Int. J. Mech. Sci.
,
49
(
5
), pp.
650
660
. 10.1016/j.ijmecsci.2006.09.012
41.
Bissacco
,
G.
,
Hansen
,
H. N.
, and
De Chiffre
,
L.
,
2006
, “
Size Effects on Surface Generation in Micro Milling of Hardened Tool Steel
,”
CIRP Ann.-Manuf. Technol.
,
55
(
1
), pp.
593
596
. 10.1016/S0007-8506(07)60490-9
42.
Lucca
,
D.
,
Rhorer
,
R.
, and
Komanduri
,
R.
,
1991
, “
Energy Dissipation in the Ultraprecision Machining of Copper
,”
CIRP Ann.-Manuf. Technol.
,
40
(
1
), pp.
69
72
. 10.1016/S0007-8506(07)61936-2
43.
L’vov
,
N.
,
1969
, “
Determining the Minimum Possible Chip Thickness
,”
Machines & Tooling
,
4
, pp.
40
45
.
44.
Kim
,
C.-J.
,
Mayor
,
J. R.
, and
Ni
,
J.
,
2004
, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
710
718
. 10.1115/1.1813475
45.
Liu
,
X.
,
DeVor
,
R.
, and
Kapoor
,
S.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
. 10.1115/1.2162905
46.
Basuray
,
P.
,
Misra
,
B.
, and
Lal
,
G.
,
1977
, “
Transition From Ploughing to Cutting During Machining With Blunt Tools
,”
Wear
,
43
(
3
), pp.
341
349
. 10.1016/0043-1648(77)90130-2
47.
Yuan
,
Z.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
327
330
. 10.1016/S0924-0136(96)02429-6
48.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
,
Ohmori
,
G.
,
Uchikoshi
,
J.
, and
Yoshinaga
,
H.
,
1993
, “
Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation
,”
CIRP Ann.-Manuf. Technol.
,
42
(
1
), pp.
91
94
. 10.1016/S0007-8506(07)62399-3
49.
Filiz
,
S.
,
Conley
,
C. M.
,
Wasserman
,
M. B.
, and
Ozdoganlar
,
O. B.
,
2007
, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1088
1100
. 10.1016/j.ijmachtools.2006.09.024
50.
Deng
,
B.
,
Zhou
,
L.
,
Peng
,
F.
,
Yan
,
R.
,
Yang
,
M.
, and
Liu
,
M.
,
2018
, “
Analytical Model of Cutting Force in Micromilling of Particle-Reinforced Metal Matrix Composites Considering Interface Failure
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081009
. 10.1115/1.4040263
51.
Samuel
,
J.
,
Dikshit
,
A.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2009
, “
Effect of Carbon Nanotube (CNT) Loading on the Thermomechanical Properties and the Machinability of CNT-Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031008
. 10.1115/1.3123337
52.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2006
, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
465
473
. 10.1115/1.2137753
53.
Kumar
,
M. N.
,
Mahmoodi
,
M.
,
TabkhPaz
,
M.
,
Park
,
S.
, and
Jin
,
X.
,
2017
, “
Characterization and Micro End Milling of Graphene Nano Platelet and Carbon Nanotube Filled Nanocomposites
,”
J. Mater. Process. Technol.
,
249
, pp.
96
107
. 10.1016/j.jmatprotec.2017.06.005
54.
Horne
,
J.
,
1978
, “
A New Model for Initial Chip Curl in Continuous Cutting
,”
Int. J. Mech. Sci.
,
20
(
11
), pp.
739
745
. 10.1016/0020-7403(78)90095-4
55.
Enomoto
,
K.
,
Yasuhara
,
T.
,
Kitakata
,
S.
,
Murakami
,
H.
, and
Ohtake
,
N.
,
2004
, “
Frictional Properties of Carbon Nanofiber Reinforced Polymer Matrix Composites
,”
New Diamond Front. Carbon Technol.
,
14
(
1
), pp.
11
20
.
56.
Chu
,
B.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2015
, “
Micromilling Responses of Hierarchical Graphene Composites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011002
. 10.1115/1.4028480
57.
Mahmoodi
,
M.
,
Mostofa
,
M.
,
Jun
,
M.
, and
Park
,
S. S.
,
2013
, “
Characterization and Micromilling of Flow Induced Aligned Carbon Nanotube Nanocomposites
,”
J. Micro. Nano-Manuf.
,
1
(
1
). 10.1115/1.4023290
58.
Gopalakrishna
,
H.
,
Rao
,
J. S.
,
Kumar
,
S. N.
,
Shetty
,
V. V.
, and
Rai
,
K.
,
2014
, “
Effect of Friction on the Cutting Forces in High Speed Orthogonal Turning of Al 6061-T6
,”
J. Mech. Civil Eng.
,
11
(
2
), pp.
78
83
. 10.9790/1684-11277883
59.
Gong
,
Y.
,
Baik
,
Y.-J.
,
Li
,
C. P.
,
Byon
,
C.
,
Park
,
J. M.
, and
Ko
,
T. J.
,
2017
, “
Experimental and Modeling Investigation on Machined Surfaces of HDPE-MWCNT Polymer Nanocomposite
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
879
885
. 10.1007/s00170-016-8840-9
60.
Zinati
,
R. F.
, and
Razfar
,
M.
,
2014
, “
Experimental and Modeling Investigation of Surface Roughness in End-Milling of Polyamide 6/Multi-Walled Carbon Nano-Tube Composite
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
979
989
. 10.1007/s00170-014-6178-8
61.
Arora
,
I.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2013
, “
Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041007
. 10.1115/1.4024814
62.
Marcon
,
A.
,
Melkote
,
S.
,
Kalaitzidou
,
K.
, and
DeBra
,
D.
,
2010
, “
An Experimental Evaluation of Graphite Nanoplatelet Based Lubricant in Micro-Milling
,”
CIRP Ann.
,
59
(
1
), pp.
141
144
. 10.1016/j.cirp.2010.03.083
63.
Shyha
,
I.
,
Fu
,
G. Y.
,
Huo
,
D. H.
,
Le
,
B.
,
Inam
,
F.
,
Saharudin
,
M. S.
, and
Wei
,
J. C.
,
2018
, “
Micro-Machining of Nano-Polymer Composites Reinforced With Graphene and Nano-Clay Fillers
,”
Key Eng. Mater.
,
786
, pp.
197
205
. www.scientific.net/KEM.786.197
64.
Gao
,
C.
, and
Jia
,
J.
,
2017
, “
Factor Analysis of Key Parameters on Cutting Force in Micromachining of Graphene-Reinforced Magnesium Matrix Nanocomposites Based on FE Simulation
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9-12
), pp.
3123
3136
. 10.1007/s00170-017-0389-8
65.
Liu
,
J.
,
Li
,
J.
,
Ji
,
Y.
, and
Xu
,
C.
,
2011
, “
Investigation on the Effect of SiC Nanoparticles on Cutting Forces for Micro-Milling Magnesium Matrix Composites
,”
ASME 2011 International Manufacturing Science and Engineering Conference
,
Corvallis, OR
,
June 13–17
.
66.
Li
,
J.
,
Liu
,
J.
, and
Xu
,
C.
,
2010
, “
Machinability Study of SiC Nano-Particles Reinforced Magnesium Nanocomposites During Micro-Milling Processes
,”
ASME 2010 International Manufacturing Science and Engineering Conference
,
Erie, PA
,
Oct. 12–15
.
67.
Teng
,
X.
,
Huo
,
D.
,
Wong
,
E.
,
Meenashisundaram
,
G.
, and
Gupta
,
M.
,
2016
, “
Micro-machinability of Nanoparticle-Reinforced Mg-Based MMCs: An Experimental Investigation
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
2165
2178
. 10.1007/s00170-016-8611-7
68.
Xiong
,
Y.
,
Wang
,
W.
,
Jiang
,
R.
, and
Lin
,
K.
,
2017
, “
A Study on Cutting Force of Machining In Situ TiB2 Particle-Reinforced 7050Al Alloy Matrix Composites
,”
Metals
,
7
(
6
), p.
197
. 10.3390/met7060197
69.
Pramanik
,
A.
,
Basak
,
A.
,
Dong
,
Y.
,
Shankar
,
S.
, and
Littlefair
,
G.
,
2018
, “
Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites
,”
J. Compos. Sci.
,
2
(
1
), p.
13
. 10.3390/jcs2010013
70.
Zeller
,
F.
,
Müller
,
C.
,
Miranzo
,
P.
, and
Belmonte
,
M.
,
2017
, “
Exceptional Micromachining Performance of Silicon Carbide Ceramics by Adding Graphene Nanoplatelets
,”
J. Eur. Ceram. Soc.
,
37
(
12
), pp.
3813
3821
. 10.1016/j.jeurceramsoc.2017.03.072
71.
Li
,
N.
,
Li
,
Y.
,
Zhou
,
J.
,
He
,
Y.
, and
Hao
,
X.
,
2015
, “
Drilling Delamination and Thermal Damage of Carbon Nanotube/Carbon Fiber Reinforced Epoxy Composites Processed by Microwave Curing
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
11
17
. 10.1016/j.ijmachtools.2015.06.005
72.
Rajakumar
,
I. P. T.
,
Hariharan
,
P.
, and
Srikanth
,
I.
,
2013
, “
A Study on Monitoring the Drilling of Polymeric Nanocomposite Laminates Using Acoustic Emission
,”
J. Compos. Mater.
,
47
(
14
), pp.
1773
1784
. 10.1177/0021998312451299
73.
Bello
,
D.
,
Wardle
,
B. L.
,
Zhang
,
J.
,
Yamamoto
,
N.
,
Santeufemio
,
C.
,
Hallock
,
M.
, and
Virji
,
M. A.
,
2010
, “
Characterization of Exposures to Nanoscale Particles and Fibers During Solid Core Drilling of Hybrid Carbon Nanotube Advanced Composites
,”
Int. J. Occup. Environ. Health
,
16
(
4
), pp.
434
450
. 10.1179/oeh.2010.16.4.434
74.
Lu
,
Y.
,
Shao
,
D.
, and
Chen
,
S.
,
2005
, “
Nanoparticle-enhanced laser micromachining of polymeric nanocomposites
,”
Transactions of NAMRI/SME
,
33
, pp.
243
249
.
75.
Das
,
R. N.
,
Egitto
,
F. D.
,
Lauffer
,
J. M.
, and
Markovich
,
V. R.
,
2007
, “
Laser Micromachining of Nanocomposite-Based Flexible Embedded Capacitors
,”
2007 Proceedings 57th Electronic Components and Technology Conference
,
Reno, NV
,
May 29–June 1
.
76.
Kwang-Ryul
,
K.
,
Byoung-Deog
,
C.
,
Jun-Sin
,
Y.
,
Sung-Hak
,
C.
,
Yong-Ho
,
C.
,
Dong-Soo
,
S.
,
Dong-Ho
,
B.
,
Myung-Chang
,
K.
, and
Young-Keun
,
J.
,
2009
, “
Laser Micromachining of CNT/Fe/Al2O3 Nanocomposites
,”
Trans. Nonferrous Metals Soc. China
,
19
, pp.
s189
s193
. 10.1016/S1003-6326(10)60269-5
77.
Wan
,
Y.
,
Kim
,
D.
,
Park
,
Y.-B.
, and
Joo
,
S.-K.
,
2008
, “
Micro Electro Discharge Machining of Polymethylmethacrylate (PMMA)/Multi-Walled Carbon Nanotube (MWCNT) Nanocomposites
,”
Adv. Compos. Lett.
,
17
(
4
), p.
096369350801700401
. 10.1177/096369350801700401
78.
Lee
,
E.
, and
Shaffer
,
B.
,
1949
,
The Theory of Plasticity Applied to a Problem of Machining
,
Division of Applied Mathematics, Brown University
,
Providence, RI
.
79.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
. 10.1063/1.1707586
80.
Teng
,
X.
,
Huo
,
D.
,
Chen
,
W.
,
Wong
,
E.
,
Zheng
,
L.
, and
Shyha
,
I.
,
2018
, “
Finite Element Modelling on Cutting Mechanism of Nano Mg/SiC Metal Matrix Composites Considering Cutting Edge Radius
,”
J. Manuf. Process.
,
32
, pp.
116
126
. 10.1016/j.jmapro.2018.02.006
81.
Huang
,
Z.
,
Guo
,
Z.
,
Chen
,
X.
,
Yue
,
T.
,
To
,
S.
, and
Lee
,
W.
,
2006
, “
Molecular Dynamics Simulation for Ultrafine Machining
,”
Mater. Manuf. Process.
,
21
(
4
), pp.
393
397
. 10.1080/10426910500411686
82.
Komanduri
,
R.
,
Lee
,
M.
, and
Raff
,
L.
,
2004
, “
The Significance of Normal Rake in Oblique Machining
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1115
1124
. 10.1016/j.ijmachtools.2004.02.015
83.
Field
,
M.
, and
Merchant
,
M. E.
,
1949
, “
Mechanics of Formation of the Discontinuous Chip in Metal Cutting
,”
Trans. ASME
,
71
(
5
), p.
421
.
84.
Fu
,
H.-J.
,
DeVor
,
R.
, and
Kapoor
,
S.
,
1984
, “
A Mechanistic Model for the Prediction of the Force System in Face Milling Operations
,”
ASME J. Eng. Ind.
,
106
(
1
), pp.
81
88
. 10.1115/1.3185915
85.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
,
1982
, “
The prediction of cutting forces in end milling with application to cornering cuts
,”
Int. J. Mach. Tool Des. Res.
,
22
(
1
), pp.
7
22
. 10.1016/0020-7357(82)90016-6
86.
Maekawa
,
K.
, and
Itoh
,
A.
,
1995
, “
Friction and Tool Wear in Nano-Scale Machining—A Molecular Dynamics Approach
,”
Wear
,
188
(
1–2
), pp.
115
122
. 10.1016/0043-1648(95)06633-0
87.
Lin
,
Z.-C.
, and
Huang
,
J.-C.
,
2004
, “
A Nano-Orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique
,”
Nanotechnology
,
15
(
5
), pp.
510
519
. 10.1088/0957-4484/15/5/019
88.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2010
, “
On the Tensile Behavior of an Embedded Carbon Nanotube in Polymer Matrix With Non-bonded Interphase Region
,”
Compos. Struct.
,
92
(
3
), pp.
647
652
. 10.1016/j.compstruct.2009.09.033
89.
Park
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
Microstructure-level Model for the Prediction of Tool Failure in WC-Co Cutting Tool Materials
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
739
748
. 10.1115/1.2194233
90.
Chuzhoy
,
L.
,
DeVor
,
R.
,
Kapoor
,
S.
, and
Bammann
,
D.
,
2002
, “
Microstructure-level Modeling of Ductile Iron Machining
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
162
169
. 10.1115/1.1455642
91.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites—Part I: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
061801
. 10.1115/1.2917378
92.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2007
, “
A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031110
. 10.1115/1.2917564
93.
Nimmer
,
R. P.
, and
Woods
,
J. T.
,
1992
, “
An Investigation of Brittle Failure in Ductile, Notch-Sensitive Thermoplastics
,”
Polym. Eng. Sci.
,
32
(
16
), pp.
1126
1137
. 10.1002/pen.760321610
94.
Nied
,
H.
,
Stokes
,
V.
, and
Ysseldyke
,
D.
,
1987
, “
High-Temperature Large-Strain Behavior of Polycarbonate, Polyetherimide and Poly (Butylene Terephthalate)
,”
Polym. Eng. Sci.
,
27
(
1
), pp.
101
107
. 10.1002/pen.760270114
95.
Argon
,
A.
, and
Salama
,
M.
,
1976
, “
The Mechanism of Fracture in Glassy Materials Capable of Some Inelastic Deformation
,”
Mater. Sci. Eng.
,
23
(
2–3
), pp.
219
230
. 10.1016/0025-5416(76)90198-1
96.
Legrand
,
D.
,
1969
, “
Crazing, Yielding, and Fracture of Polymers. I. Ductile Brittle Transition in Polycarbonate
,”
J. Appl. Polym. Sci.
,
13
(
10
), pp.
2129
2147
. 10.1002/app.1969.070131010
97.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure-level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites—Part II: Model Interpretation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031115
. 10.1115/1.2927431
98.
Jiang
,
L.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2015
, “
An Enhanced Microstructure-Level Finite Element Machining Model for Carbon Nanotube-Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021009
. 10.1115/1.4028200
99.
Müller
,
F.
, and
Monaghan
,
J.
,
2000
, “
Non-conventional Machining of Particle Reinforced Metal Matrix Composite
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1351
1366
. 10.1016/S0890-6955(99)00121-2
100.
Kyritsis
,
D. C.
,
Roychoudhury
,
S.
,
McEnally
,
C. S.
,
Pfefferle
,
L. D.
, and
Gomez
,
A.
,
2004
, “
Mesoscale Combustion: A First Step Towards Liquid Fueled Batteries
,”
Exp. Therm. Fluid. Sci.
,
28
(
7
), pp.
763
770
. 10.1016/j.expthermflusci.2003.12.014
101.
Zuberi
,
M. J. S.
, and
Esat
,
V.
,
2015
, “
Investigating the Mechanical Properties of Single Walled Carbon Nanotube Reinforced Epoxy Composite Through Finite Element Modelling
,”
Composites Part B: Engineering
,
71
, pp.
1
9
. 10.1016/j.compositesb.2014.11.020
102.
Johnson
,
G. R.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, Netherlands
,
Apr. 19–21
.
103.
Dwivedi
,
A.
,
Bradley
,
J.
, and
Casem
,
D.
,
2012
,
Mechanical Response of Polycarbonate with Strength Model Fits, U.S. Army Research Laboratory
, ARL-TR-5899.
104.
King
,
J. A.
,
Klimek
,
D. R.
,
Miskioglu
,
I.
, and
Odegard
,
G. M.
,
2013
, “
Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites
,”
J. Appl. Polym. Sci.
,
128
(
6
), pp.
4217
4223
. 10.1002/app.38645
105.
Tiejun
,
W.
,
Kishimoto
,
K.
, and
Notomi
,
M.
,
2002
, “
Effect of Triaxial Stress Constraint on the Deformation and Fracture of Polymers
,”
Acta Mech. Sin.
,
18
(
5
), pp.
480
493
. 10.1007/BF02486573
106.
Teng
,
X.
,
Chen
,
W.
,
Huo
,
D.
,
Shyha
,
I.
, and
Lin
,
C.
,
2018
, “
Comparison of Cutting Mechanism When Machining Micro and Nano-Particles Reinforced SiC/Al Metal Matrix Composites
,”
Compos. Struct.
,
203
, pp.
636
647
. 10.1016/j.compstruct.2018.07.076
You do not currently have access to this content.