Abstract

In this study, the weldability, microstructure, and tensile properties of CM64 and Tribaloy T-800 (T800) cobalt-based hard-facing materials were studied. Successful CM64 hard-facing could be achieved at ambient temperature using manual gas tungsten arc welding (GTAW-MA). It was shown that T800 welded at ambient temperature was prone to cold cracking due to a combination of low ductility with high welding stresses that limited the accommodation of residual stresses by plastic deformation within the weld beads. Sound T800 welds of various geometries and sizes were produced on cobalt- and nickel-based X-40 and Haynes 230 superalloys, respectively, using GTAW-MA when preheating above 900 °C was used. Microstructural analyses on the sound CM64 and T800 welds were performed using optical and electron microscopy and X-ray diffraction. The distribution of elements and phases in each alloy was evaluated and revealed the epitaxial dendritic structure with the Cr–W–Si-based phase in the interdendritic region in CM64 welds compared with petal-like and equiaxed hard Mo–Co–Si-based dendrites and fine particles in T800. Tensile testing from room temperature up to 1093 °C was performed on both alloys. T800 welds possessed lower ultimate tensile strengths and elongations in this temperature range when compared with the CM64 alloy. Recommendations for hard-facing of turbine engine components were provided.

References

1.
Fesharaki
,
M. N.
,
Shoja-Razavi
,
R.
,
Mansouri
,
H. A.
, and
Jamali
,
H.
,
2019
, “
Evaluation of the Hot Corrosion Behavior of Inconel 625 Coatings on the Inconel 738 Substrate by Laser and TIG Cladding Techniques
,”
Opt. Laser Technol.
,
111
, pp.
744
753
. 10.1016/j.optlastec.2018.09.011
2.
Ramakrishnan
,
A.
, and
Dinda
,
G.
,
2019
, “
Direct Laser Metal Deposition of Inconel 738
,”
Mater. Sci. Eng. A
,
740
, pp.
1
13
. 10.1016/j.msea.2018.10.020
3.
Spachtholz
,
J.
,
Affeldt
,
E.
,
Maier
,
H.
, and
Hammer
,
J.
,
2018
, “
Modelling of the Fatigue Crack Growth of a Coated Single Crystalline Nickel-Based Superalloy Under Thermal Mechanical Loading
,”
Int. J. Fatigue
,
116
, pp.
268
274
. 10.1016/j.ijfatigue.2018.06.015
4.
Henderson
,
M. B.
,
Arrell
,
D.
,
Larsson
,
R.
,
Heobel
,
M.
, and
Marchant
,
G.
,
2004
, “
Nickel Based Superalloy Welding Practices for Industrial Gas Turbine Applications
,”
Sci. Technol. Weld. Joining
,
9
(
1
), pp.
13
21
. 10.1179/136217104225017099
5.
Gontcharov
,
A.
,
Tian
,
Y.
,
Lowden
,
P.
,
Tollett
,
R.
, and
Brochu
,
M.
,
2018
, “
Advanced Welding Materials and Technologies for Repair of Turbine Engine Components Manufactured of High Gamma Prime Nickel Based Superalloys
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 9–11
, American Society of Mechanical Engineers.
6.
Kou
,
S.
,
2003
,
Welding Metallurgy
,
Wiley
,
Hoboken, NJ
, pp.
431
446
.
7.
Oliveira
,
J. P
,
Curado
,
T. M
,
Zeng
,
Z.
,
Lopes
,
J. G.
,
Rossinyol
,
E.
,
Park
,
J. M.
,
Schell
,
N.
,
Brazz Fernandes
,
F. M.
, and
Kim
,
H. S.
,
2020
, “
Gas Tungsten Arc Welding of As-Rolled CrMnFeCoNi High Entropy Alloy
,”
Mater. Des.
,
189
, p.
108505
. 10.1016/j.matdes.2020.108505
8.
Zhang
,
Y.-D.
,
Zhang
,
C.
,
Lan
,
H.
,
Hou
,
P.
, and
Yang
,
Z.-G.
,
2011
, “
Improvement of the Oxidation Resistance of Tribaloy T-800 Alloy by the Additions of Yttrium and Aluminium
,”
Corros. Sci.
,
53
(
3
), pp.
1035
1043
. 10.1016/j.corsci.2010.11.038
9.
I. T. W. LLC
,
2018
,
Alloy 694 (CM64) Data Sheet
,
International Trade Winds LLC
,
São Paulo, Brazil
.
10.
Solution
,
D. W.
,
2018
,
Tribaloy T-800 Alloy Technical Data
,
Deloro Wear Solution
,
Koblenz, Germany
.
11.
Cho
,
T.
,
Yoon
,
J.
,
Kim
,
K.
,
Baek
,
N.
,
Song
,
K.
,
Youn
,
S.
,
Hwang
,
S.
, and
Chun
,
H.
,
2006
, “
Comparison of HVOF Thermal Spray Coatings of T800 and WC-Co Powders
,”
J. Korean Inst. Surf. Eng.
,
39
(
6
), pp.
295
301
.
12.
Feng
,
G.
,
Peck
,
A.
,
Balsone
,
S.
, and
Carneiro
,
T.
,
2004
, “
Weldability and Mechanical Behavior of GTD-141
,” Superalloys, TMS2004, pp.
545
551
.
13.
Гуревич
,
СМ
,
1990
, “
Справочник по сварке цветных металлов
,”
Киев: Наукова думка
, pp.
34
41
.
14.
Schultz
,
H.
,
1994
,
Electron Beam Welding
,
Elsevier
,
New York
.
15.
Goncharov
,
A. B.
,
Liburdi
,
J.
, and
Lowden
,
P.
,
2019
, “
Welding Material for Welding of Superalloys
,”
U.S. Patent
, 10,414,003.
16.
Yao
,
M. X
,
Wu
,
J. B. C.
,
Yick
,
S.
,
Xie
,
Y.
, and
Liu
,
R.
,
2006
, “
High Temperature Wear and Corrosion Resistance of a Laves Phase Strengthened Co–Mo–Cr–Si Alloy
,”
Mater. Sci. Eng. A
,
435
, pp.
78
83
. 10.1016/j.msea.2006.07.054
17.
Nikam
,
S. H.
, and
Jain
,
N. K.
,
2019
, “
Modeling and Prediction of Residual Stresses in Additive Layer Manufacturing by Microplasma Transferred Arc Process Using Finite Element Simulation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061003
. 10.1115/1.4043264
18.
Bass
,
L.
,
Milner
,
J.
,
Gnäupel-Herold
,
T.
, and
Moylan
,
S.
,
2018
, “
Residual Stress in Additive Manufactured Nickel Alloy 625 Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061004
. 10.1115/1.4039063
19.
HAYNES 230 Alloy
, “
Heat Resistant Alloy at a Glance
,”
HAYNES International
, Accessed 2019.
20.
Klopp
,
W. D.
,
1985
,
X-40/X-45, Aerospace Structural Metals Handbook, Vol. Code 4305
,
NASA
,
Hanover, MD
.
21.
Kurz
,
W.
, and
Fisher
,
D. J.
,
1998
,
Fundamentals of Solidification
,
Trans Tech Publications
,
Uetikon-Zuerich, Switzerland
.
22.
Duflos
,
F.
, and
Stohr
,
J.-F.
,
1982
, “
Comparison of the Quench Rates Attained in Gas-Atomized Powders and Melt-Spun Ribbons of Co-and Ni-Base Superalloys: Influence on Resulting Microstructures
,”
J. Mater. Sci.
,
17
(
12
), pp.
3641
3652
. 10.1007/BF00752209
23.
Gupta
,
K.
,
2006
, “
The Co–Cr–W (Cobalt-Chromium-Tungsten) System
,”
J. Phase Equilib. Diffus.
,
27
(
2
), p.
178
.
24.
Halstead
,
A.
, and
Rawlings
,
R. D.
,
1985
, “
The Fracture Behaviour of Two Co–Mo–Cr–Si Wear Resistant Alloys (“Tribaloys”)
,”
J. Mater. Sci.
,
20
(
4
), pp.
1248
1256
. 10.1007/BF01026320
25.
Yao
,
M.
,
Wu
,
J.
, and
Liu
,
R.
,
2005
, “
Microstructural Characteristics and Corrosion Resistance in Molten Zn–Al Bath of Co–Mo–Cr–Si Alloys
,”
Mater. Sci. Eng. A
,
407
(
1–2
), pp.
299
305
. 10.1016/j.msea.2005.07.054
26.
Liu
,
R.
,
Xi
,
S.
,
Kapoor
,
S.
, and
Wu
,
X.
,
2010
, “
Investigation of Solidification Behavior and Associate Microstructures of Co–Cr–W and Co–Cr–Mo Alloy Systems Using DSC Technique
,”
J. Mater. Sci.
,
45
(
22
), pp.
6225
6234
. 10.1007/s10853-010-4717-8
27.
Donachie
,
M. J.
, and
Donachie
,
S. J.
,
2002
,
Superalloys: A Technical Guide
,
ASM International
,
Materials Park, OH
.
28.
T.I. N.C., Inc.
,
Alloy IN-738 Technical Data
,
The International Nickel Company, Inc., INCO
,
New York
.
29.
High-Temperature High-Strength
Nickel Base Alloys, No. 393
,
Nickel Development Institute
, Accessed 1995.
You do not currently have access to this content.