Abstract

Today, several medical diagnosis and therapeutic cancer interventions are performed using needles via percutaneous surgical procedures. The success of these procedures highly depends on accurate placement of the needle tip at target positions. Improving targeting accuracy necessitates improvements in medical imaging and needle steering techniques. The former provides an improved vision on the target (i.e., cancerous tissue) and the needle, while the latter enables an enhanced interventional tool. In spite of considerable advancements in the medical imaging field, structure of the needle itself has remained unchanged. In the past decade, research works have suggested passive or active navigation of the needle inside the tissue to improve targeting accuracy. In addition, to provide actuation and control for needle steering, an active needle has been introduced activated by shape memory alloy (SMA) actuators. However, actuation of SMAs is complex due to their nonlinear and hysteresis behavior that depends on stress, strain, and temperature during operation. This work studies rapid manufacturing (via 3D printing), precise assembly, and performance evaluation of multiple distributed SMA actuators in an active flexible needle. The interactive response of the SMA actuators was investigated using experimental tests, constitutive material model, and kinematics of the active needle. It was shown that with proper installation of SMA actuators on the active needle, an effective manipulation can be realized in three dimensions.

References

1.
Siegel
,
R. L.
,
Miller
,
K. D.
, and
Jemal
,
A.
, “
Cancer Statistics, 2019
,”
CA. Cancer J. Clin.
,
69
(
1
), pp.
7
34
. 10.1016/j.brachy.2008.02.452
2.
Chin
,
J.
,
Rumble
,
R. B.
,
Kollmeier
,
M.
,
Heath
,
E.
,
Efstathiou
,
J.
,
Dorff
,
T.
,
Berman
,
B.
,
Feifer
,
A.
,
Jacques
,
A.
, and
Loblaw
,
D.A.
,
2017
, “
Brachytherapy for Patients With Prostate Cancer: American Society of Clinical Oncology/Cancer Care Ontario Joint Guideline Update
,”
J. Clin. Oncol.
,
35
(
15
), pp.
1737
1743
.
3.
Crossan
,
P.
,
2015
,
External Beam Radiation Therapy Breast Disease
,
Springer
,
New York, NY
, pp.
377
397
.
4.
Bittner
,
N. H. J.
,
Orio
,
P. F.
,
Merrick
,
G. S.
,
Prestidge
,
B. R.
,
Hartford
,
A. C.
, and
Rosenthal
,
S. A.
,
2017
, “
The American College of Radiology and the American Brachytherapy Society Practice Parameter for Transperineal Permanent Brachytherapy of Prostate Cancer
,”
Brachytherapy
,
16
(
1
), pp.
59
67
.
5.
Shah
,
C.
,
Lanni Jr
,
T. B.
,
Ghilezan
,
M. I.
,
Gustafson
,
G. S.
,
Marvin
,
K. S.
,
Ye
,
H.
,
Vicini
,
F. A.
, and
Martinez
,
A. A.
,
2012
, “
Brachytherapy Provides Comparable Outcomes and Improved Cost-Effectiveness in the Treatment of Low/Intermediate Prostate Cancer
,”
Brachytherapy
,
11
(
6
), pp.
441
445
.
6.
Viswanathan
,
A. N.
,
Erickson
,
B. A.
,
Ibbott
,
G. S.
,
Small
,
W.
, and
Eifel
,
P. J.
,
2017
, “
The American College of Radiology and the American Brachytherapy Society Practice Parameter for the Performance of Low-Dose-Rate Brachytherapy
,”
Brachytherapy
,
16
(
1
), pp.
68
74
.
7.
Konh
,
B.
,
Honarvar
,
M.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2017
, “
Simulation and Experimental Studies in Needle–Tissue Interactions
,”
J. Clin. Monit. Comput.
,
31
(
4
), pp.
861
872
. 10.1007/s10877-016-9909-6
8.
Merrick
,
G. S.
,
Butler
,
W. M.
,
Dorsey
,
A. T.
, and
Walbert
,
H. L.
,
1998
, “
Influence of Timing on the Dosimetric Analysis of Transperineal Ultrasound-Guided, Prostatic Conformal Brachytherapy
,”
Radiat. Oncol. Investig.
,
6
(
4
), pp.
182
190
.
9.
Podder
,
T. K.
,
Dicker
,
A. P.
,
Hutapea
,
P.
, and
Yu
,
Y.
,
2012
, “
A Novel Curvilinear Approach for Prostate Seed Implantation
,”
J. Med. Phys.
,
39
(
4
), pp.
1887
1892
. 10.1118/1.3694110
10.
van de Berg
,
N. J.
,
van Gerwen
,
D. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Design Choices in Needle Steering -A Review
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2172
2183
. 10.1109/TMECH.2014.2365999
11.
Brockman
,
C. S.
, and
Harshman
,
G. J.
,
2013
, “
Systems and Methods for Off-Axis Tissue Manipulation
,” U. S. Patent No. 13/923,104.
12.
Desai
,
J. P.
, and
Ayvali
,
E.
,
2017
, “
Actuated Steerable Probe and Systems and Methods of Using Same
,” U. S. Patent No. 9,655,679.
13.
Melsheimer
,
J. S.
,
2016
, “
Deflectable Biopsy Device
,” U. S. Patent No. 9,247,929.
14.
Eck
,
K.
,
2007
, “
Surgical Needle and Method of Guiding a Surgical Needle
,” U. S. Patent No. 12/299,122.
15.
Arvanaghi
,
B.
,
2006
, “
Bendable Needle Assembly
,” U. S. Patent No. 11/525,134.
16.
Smits
,
K. F.
,
Rutten
,
J. J.
, and
Adams
,
P. G.
,
2005
, “
Method and Apparatus for Imparting Curves in Implantable Elongated Medical Instruments
,” U. S. Patent No. 6,907,298.
17.
Salcudean
,
S. E.
,
Rohling
,
R. N.
,
Okazawa
,
S. H.
, and
Ebrahimi
,
A. R.
,
2010
, “
Steerable Needle
,” U. S. Patent No. 7,662,128.
18.
Ryan
,
T. J.
, and
Winslow
,
C. J.
,
1994
, “
Percutaneous Discectomy System Having a Bendable Discectomy Probe and a Steerable Cannula
,” U. S. Patent No. 5,285,795.
19.
Kuhle
,
W. G.
,
1999
, “
Biopsy Needle With Flared Tip
,” U. S. Patent No. 5,938,635.
20.
Kraft
,
D.
, and
Hole
,
J.
,
2008
, “
Device and Method for Rapid Aspiration and Collection of Body Tissue From Within an Enclosed Body Space
,” U. S. Patent No. 7,462,181.
21.
Reed
,
K.
,
Majewicz
,
A.
,
Kallem
,
V.
,
Alterovitz
,
R.
,
Goldberg
,
K.
,
Cowan
,
N.
, and
Okamura
,
A.
,
2011
, “
Robot-Assisted Needle Steering
,”
IEEE Robot. Autom. Mag.
,
18
(
4
), pp.
35
46
. 10.1109/MRA.2011.942997
22.
Wedlick
,
T. R.
, and
Okamura
,
A. M.
,
2009
, “
Characterization of Pre-curved Needles for Steering in Tissue
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Minneapolis, MN
,
Sept. 3–6
, pp.
1200
1203
.
23.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
, III
,
2013
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
. 10.1109/TBME.2012.2230001
24.
Webster
,
R. J.
,
Romano
,
J. M.
,
Member
,
S.
, and
Cowan
,
N. J.
,
2009
, “
Mechanics of Precurved-Tube Continuum Robots
,”
Robot. IEEE Trans.
,
25
(
1
), pp.
67
78
. 10.1109/TRO.2008.2006868
25.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
. 10.1177/0278364910369714
26.
Roesthuis
,
R. J.
,
Abayazid
,
M.
, and
Misra
,
S.
,
2012
, “
Mechanics-Based Model for Predicting in-Plane Needle Deflection with Multiple Bends
,”
2012 Proceedings of 4th IEEE RAS EMBS International Conference on Biomedical Robotics Biomechatronics
,
Rome, Italy
,
June 24–27
, pp.
69
74
.
27.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
. 10.1016/j.medengphy.2006.07.003
28.
Meltsner
,
M. A.
,
Ferrier
,
N. J.
, and
Thomadsen
,
B. R.
,
2007
, “
Observations on Rotating Needle Insertions Using a Brachytherapy Robot
,”
Phys. Med. Biol.
,
52
(
19
), pp.
6027
6037
. 10.1088/0031-9155/52/19/021
29.
Engh
,
J. A.
,
Minhas
,
D. S.
,
Kondziolka
,
D.
, and
Riviere
,
C. N.
,
2010
, “
Percutaneous Intracerebral Navigation by Duty-Cycled Spinning of Flexible Bevel-Tipped Needles
,”
Neurosurgery
,
67
(
4
), pp.
1117
1122
. 10.1227/NEU.0b013e3181ec1551
30.
Swensen
,
J. P.
,
Lin
,
M.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2014
, “
Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance
,”
IEEE Trans. Biomed. Eng.
,
61
(
11
), pp.
2707
2717
. 10.1109/TBME.2014.2326161
31.
Reed
,
K. B.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2009
, “
Modeling and Control of Needles With Torsional Friction
,”
IEEE Trans. Biomed. Eng.
,
56
(
12
), pp.
2905
2916
. 10.1109/TBME.2009.2029240
32.
Scali
,
M.
,
Pusch
,
T. P.
,
Breedveld
,
P.
, and
Dodou
,
D.
,
2017
, “
Needle-like Instruments for Steering Through Solid Organs: A Review of the Scientific and Patent Literature
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
231
(
3
), pp.
250
265
. 10.1177/0954411916672149
33.
Swaney
,
P. J.
,
York
,
P. A.
,
Gilbert
,
H. B.
,
Burgner-Kahrs
,
J.
, and
Webster
,
R. J.
,
2017
, “
Design, Fabrication, and Testing of a Needle-Sized Wrist for Surgical Instruments
,”
ASME J. Med. Device
,
11
(
1
), p.
014501
. 10.1115/1.4034575
34.
Su
,
H.
,
Li
,
G.
,
Rucker
,
D. C.
,
Webster
,
R. J.
, and
Fischer
,
G. S.
,
2016
, “
A Concentric Tube Continuum Robot With Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2863
2873
. 10.1007/s10439-016-1585-7
35.
Ryu
,
S. C.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2011
, “
Feasibility Study of an Optically Actuated MR-Compatible Active Needle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sept. 25–30
, pp.
2564
2569
.
36.
Ayvali
,
E.
,
Liang
,
C.-P. C. P.
,
Ho
,
M.
,
Chen
,
Y. Y.
, and
Desai
,
J. P.
,
2012
, “
Towards a Discretely Actuated Steerable Cannula for Diagnostic and Therapeutic Procedures
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
588
603
. 10.1177/0278364912442429
37.
Morimoto
,
T. K.
,
Cerrolaza
,
J. J.
,
Hsieh
,
M. H.
,
Cleary
,
K.
,
Okamura
,
A. M.
, and
Linguraru
,
M. G.
,
2017
, “
Design of Patient-Specific Concentric Tube Robots Using Path Planning From 3-D Ultrasound
,”
39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Jeju Island, South Korea
,
July 11–15
, pp.
165
168
.
38.
Abayazid
,
M.
,
Kemp
,
M.
, and
Misra
,
S.
,
2013
, “
3D Flexible Needle Steering in Soft-Tissue Phantoms Using Fiber Bragg Grating Sensors
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
5843
5849
.
39.
Scali
,
M.
,
Pusch
,
T. P.
,
Breedveld
,
P.
, and
Dodou
,
D.
,
2017
, “
Ovipositor-inspired Steerable Needle: Design and Preliminary Experimental Evaluation
,”
Bioinspir. Biomim.
,
13
(
1
), p.
016006
. 10.1088/1748-3190/aa92b9
40.
Sears
,
P.
, and
Dupont
,
P.
,
2006
, “
A Steerable Needle Technology Using Curved Concentric Tubes
,”
IEEE International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
2850
2856
.
41.
van de Berg
,
N. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Design of an Actively Controlled Steerable Needle With Tendon Actuation and FBG-Based Shape Sensing
,”
Med. Eng. Phys.
,
37
(
6
), pp.
617
622
. 10.1016/j.medengphy.2015.03.016
42.
Ryu
,
S. C.
,
Quek
,
Z. F.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2012
, “
An Optical Actuation System and Curvature Sensor for a MR-Compatible Active Needle
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
1589
1594
.
43.
Konh
,
B.
, and
Podder
,
T. K.
,
2017
, “
Design and Fabrication of a Robust Active Needle Using SMA Wires
,”
Frontiers in Biomedical Devices ASME
,
Minneapolis, MN
,
Apr. 10–13
, p. V001T08A021.
44.
Lagoudas
,
D. C.
,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer
,
New York
.
45.
Varnamkhasti
,
Z. K.
, and
Konh
,
B.
,
2019
, “
Design and Performance Study of a Novel Minimally Invasive Active Surgical Needle
,”
J. Med. Device.
,
13
(
4
), pp.
1
9
.
46.
Varnamkhasti
,
Z. K.
, and
Konh
,
B.
,
2020
, “
Cable-driven 3D Steerable Surgical Needle for Needle-Based Procedures
,”
Frontiers in Biomedical Devices ASME
,
Minneapolis, MN
,
Apr. 6
, pp.
1
5
.
47.
Karimi
,
S.
, and
Konh
,
B.
,
2019
, “
3D Steerable Active Surgical Needle
,”
Frontiers in Biomedical Devices ASME
,
Minneapolis, MN
,
Apr. 15–18
, pp.
1
6
.
48.
Karimi
,
S.
, and
Konh
,
B.
,
2020
, “
Self-Sensing Electrical Feedback Control of Multiple Interacting SMA Actuators in a 3D Steerable Active Flexible Needle
,”
J. Intell. Mater. Syst. Struct.
,
13
(
12
), pp.
1524
1540
.
49.
Datla
,
N. V.
,
Konh
,
B.
,
Koo
,
J. J. Y.
,
Choi
,
D. J. W.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2014
, “
Polyacrylamide Phantom for Self-Actuating Needle-Tissue Interaction Studies
,”
Med. Eng. Phys.
,
36
(
1
), pp.
140
145
. 10.1016/j.medengphy.2013.07.004
50.
Konh
,
B.
,
Sasaki
,
D.
,
Podder
,
T. K.
, and
Ashrafiuon
,
H.
,
2019
, “
3D Manipulation of an Active Steerable Needle via Actuation of Multiple SMA Wires
,”
Robotica
,
38
(
3
), pp.
1
17
. 10.1017/S0263574719000705
51.
Konh
,
B.
,
Honarvar
,
M.
, and
Hutapea
,
P.
,
2015
, “
Design Optimization Study of a Shape Memory Alloy Active Needle for Biomedical Applications
,”
J. Med. Eng. Phys.
,
37
(
5
), pp.
469
477
. 10.1016/j.medengphy.2015.02.013
52.
Brinson
,
L. C.
,
1993
, “
One-dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-constant Material Functions and Redefined Martensie Internal Variable
,”
J. Intell. Mater. Syst. Struct.
,
4
(
2
), pp.
229
242
. 10.1177/1045389X9300400213
53.
Konh
,
B.
,
Datla
,
N. V.
, and
Hutapea
,
P.
,
2015
, “
Feasibility of SMA Wire Actuation for an Active Steerable Cannula
,”
ASME J. Med. Device.
,
9
(
2
), p.
021002
. 10.1115/1.4029557
54.
Karimi
,
S.
, and
Konh
,
B.
,
2019
, “
3D Steerable Active Surgical Needle
,”
Frontiers in Biomedical Devices ASME
,
Minneapolis, MN
,
Apr. 15–18
.
55.
Karimi
,
S.
, and
Konh
,
B.
,
2020
, “
Dynamic Characteristics Analyses and FEM Modeling of Flexible Joints of an SMA-Activated Flexible Multi-Joint Needle
,”
Frontiers in Biomedical Devices ASME
,
Minneapolis, MN
,
Apr. 6
.
56.
Karimi
,
S.
, and
Konh
,
B.
,
2020
, “
Self-Sensing Electrical Resistance Feedback Control of Multiple Interacting SMA Actuators in a 3D Steerable Active Needle
,”
J. Intell. Mater. Syst. Struct.
,
13
(
12
), pp.
1524
1540
.
57.
Taa
,
P.
,
Sherman
,
J.
,
Rubens
,
D.
,
Messing
,
E.
,
Strang
,
J.
,
Ng
,
W.-S.
, and
Yu
,
Y.
,
2008
, “
Methods for Prostate Stabilization During Transperineal LDR Brachytherapy
,”
Phys. Med. Biol.
,
53
(
6
), pp.
1563
1579
. 10.1088/0031-9155/53/6/004
58.
Rossa
,
C.
, and
Tavakoli
,
M.
,
2017
, “
Issues in Closed-Loop Needle Steering
,”
Control Eng. Pract.
,
62
, pp.
55
69
. 10.1016/j.conengprac.2017.03.004
59.
Webster
,
R. J.
,
Kim
,
J. S.
,
Cowan
,
N. J.
, and
Okamura
,
A. M.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
. 10.1177/0278364906065388
60.
Cowan
,
A. M.
,
Goldberg
,
N. J.
,
Chirikjian
,
K.
,
Fichtinger
,
G. S.
,
Alterovitz
,
G.
,
Reed
,
R.
,
Kallem
,
K. B.
,
Park
,
V.
,
Misra
,
W.
, and
Okamura
,
S.
,
2011
,
Surg. Robot.
,
Springer
,
Boston, MA
, pp.
557
582
. 10.1007/978-1-4419-1126-1_23
61.
Dimaio
,
S. P.
, and
Salcudean
,
S. E.
,
2005
, “
Needle Steering and Motion Planning in Soft Tissues
,”
IEEE Trans. Biomed. Eng.
,
52
(
6
), pp.
965
974
. 10.1109/TBME.2005.846734
62.
Alterovitz
,
R.
,
Lim
,
A.
,
Goldberg
,
K.
,
Chirikjian
,
G. S.
, and
Okamura
,
A. M.
,
2005
, “
Steering Flexible Needles Under Markov Motion Uncertainty
,”
2005 IEEE/RSJ International Conference on Intelligent Robot and Systems IROS
,
Edmonton, Alberta, Canada
,
Aug. 2–6
, pp.
120
125
.
63.
Yan
,
K. G.
,
Podder
,
T.
,
Yu
,
Y.
,
Liu
,
T. I.
,
Cheng
,
C. W. S.
, and
Ng
,
W. S.
,
2009
, “
Flexible Needle-Tissue Interaction Modeling With Depth-Varying Mean Parameter: Preliminary Study
,”
IEEE Trans. Biomed. Eng.
,
56
(
2
), pp.
255
262
. 10.1109/TBME.2008.2005959
64.
Rossa
,
C.
,
Khadem
,
M.
,
Sloboda
,
R.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2016
, “
Adaptive Quasi-Static Modelling of Needle Deflection During Steering in Soft Tissue
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
916
923
. 10.1109/LRA.2016.2527065
65.
Yan
,
K. G.
,
Podder
,
T.
,
Xiao
,
D.
,
Yu
,
Y.
,
Liu
,
T.-I.
,
Cheng
,
C. W. S.
, and
Ng
,
W. S.
,
2006
, “
An Improved Needle Steering Model With Online Parameter Estimator
,”
Int. J. Comput. Assist. Radiol. Surg.
,
1
(
4
), pp.
205
212
. 10.1007/s11548-006-0058-0
66.
Khadem
,
M.
,
Rossa
,
C.
,
Sloboda
,
R. S.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2016
, “
Ultrasound-Guided Model Predictive Control of Needle Steering in Biological Tissue
,”
J. Med. Robot. Res.
,
01
(
01
), p.
1640007
. 10.1142/S2424905X16400079
67.
Haddadi
,
A.
,
Goksel
,
O.
,
Salcudean
,
S. E.
, and
Hashtrudi-Zaad
,
K.
,
2010
, “
On the Controllability of Dynamic Model-Based Needle Insertion in Soft Tissue
,”
2010 Annual International Conference IEEE Engineering in Medicine and Biology Society, EMBC’10
,
Buenos Aires, Argentina
,
Aug. 31–Sept. 4
, pp.
2287
2291
.
68.
Cohen
,
R. J.
,
Shannon
,
B. A.
,
Phillips
,
M.
,
Moorin
,
R. E.
,
Wheeler
,
T. M.
, and
Garrett
,
K. L.
,
2008
, “
Central Zone Carcinoma of the Prostate Gland: A Distinct Tumor Type With Poor Prognostic Features
,”
J. Urol.
,
179
(
5
), pp.
1762
1767
. 10.1016/j.juro.2008.01.017
69.
McNeal
,
J. E.
,
Redwine
,
E. A.
,
Freiha
,
F. S.
, and
Stamey
,
T. A.
,
1988
, “
Zonal Distribution of Prostatic Adenocarcinoma. Correlation With Histologic Pattern and Direction of Spread
,”
Am. J. Surg. Pathol.
,
12
(
12
), pp.
897
906
. 10.1097/00000478-198812000-00001
You do not currently have access to this content.