Abstract

With advances in computational techniques, numerical methods such as finite element method (FEM) are gaining much of the popularity for analysis as these substitute the expensive trial and error experimental techniques to a great extent. Consequently, selection of suitable material models and determination of precise material model constants are one of the prime concerns in FEM. This paper presents a methodology to determine the Johnson-Cook constitutive equation constants (JC constants) of 97 W Tungsten heavy alloys (WHAs) under high strain rate conditions using machining tests in conjunction with Oxley’s predictive model and particle swarm optimization (PSO) algorithm. Currently, availability of the high strain rate data for 97 WHA are limited and consequently, JC constants for the same are not readily available. The overall methodology includes determination of three sets of JC constants, namely, M1 and M2 from the Split-Hopkinson pressure bar (SHPB) test data available in literature by using conventional optimization technique and artificial bee colony (ABC) algorithm, respectively. However, M3 is determined from machining tests using inverse identification method. To validate the identified JC constants, machining outputs (cutting forces, temperature, and shear strain) are predicted using finite element (FE) model by considering M1, M2, and M3 as input under different cutting conditions and then validated with corresponding experimental values. The predicted outputs obtained using JC constants M3 closely matched with that of the experimental ones with error percentage well within 10%.

References

1.
Kiran
,
U. R.
,
Panchal
,
A.
,
Sankaranarayana
,
M.
,
Rao
,
G. N.
, and
Nandy
,
T.
,
2015
, “
Effect of Alloying Addition and Microstructural Parameters on Mechanical Properties of 93% Tungsten Heavy Alloys
,”
Mater. Sci. Eng. A
,
640
, pp.
82
90
. 10.1016/j.msea.2015.05.046
2.
Becker
,
S.
,
Hotz
,
H.
,
Kirsch
,
B.
,
Aurich
,
J. C.
,
Harbou
,
E. V.
, and
Muller
,
R.
,
2018
, “
A Finite Element Approach to Calculate Temperatures Arising During Cryogenic Turning of Metastable Austenitic Steel AISI 347
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101016
. 10.1115/1.4040778
3.
Frueh
,
P.
,
Heine
,
A.
,
Weber
,
K. E.
, and
Wickert
,
M.
,
2016
, “
Effective Depth-of-Penetration Range Due to Hardness Variation for Different Lots of Nominally Identical Target Material
,”
Def. Technol.
,
12
(
2
), pp.
171
176
. 10.1016/j.dt.2015.10.002
4.
Zhou
,
J.
,
Ren
,
J.
,
Feng
,
Y.
,
Tian
,
W.
, and
Shi
,
K.
,
2017
, “
A Modified Parallel-Sided Shear Zone Model for Determining Material Constitutive Law
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
589
603
. 10.1007/s00170-016-9717-7
5.
Oxley
,
P. L. B.
,
1963
, “
Rate of Strain Effect in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
85
(
4
), pp.
335
337
.
6.
Bosetti
,
P.
,
Bort
,
C. M. G.
, and
Bruschi
,
S.
,
2013
, “
Identification of Johnson–Cook and Tresca’s Parameters for Numerical Modeling of AISI-304 Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051021
. 10.1115/1.4025340
7.
Gupta
,
A. K.
,
Krishnamurthy
,
H. N.
,
Singh
,
Y.
, and
Prasad
,
K. M.
,
2013
, “
Development of Constitutive Models for Dynamic Strain Aging Regime in Austenitic Stainless Steel 304
,”
Mater. Des.
,
45
, pp.
616
627
. 10.1016/j.matdes.2012.09.041
8.
Woodward
,
R.
,
Baldwin
,
N.
,
Burch
,
I.
, and
Baxter
,
B.
,
1985
, “
Effect of Strain Rate on the Flow Stress of Three Liquid Phase Sintered Tungsten Alloys
,”
Metall. Trans. A
,
16
(
11
), pp.
2031
2037
. 10.1007/BF02662404
9.
Sagar
,
C. K.
,
Priyadarshini
,
A.
,
Gupta
,
A. K.
, and
Shukla
,
S. K.
,
2018
, “
Determination of Johnson Cook Material Model Constants and Their Influence on Machining Simulations of Tungsten Heavy Alloy
,”
ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
, p.
V001T03A010
.
10.
Chen
,
G.
,
Ren
,
C.
,
Yu
,
W.
,
Yang
,
X.
, and
Zhang
,
L.
,
2012
, “
Application of Genetic Algorithms for Optimizing the Johnson–Cook Constitutive Model Parameters When Simulating the Titanium Alloy Ti-6Al-4V Machining Process
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
226
(
8
), pp.
1
11
. 10.1177/0954405412447735
11.
Ning
,
J.
, and
Liang
,
S. Y.
,
2018
, “
Model-driven Determination of Johnson-Cook Material Constants Using Temperature and Force Measurements
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
1053
1060
. 10.1007/s00170-018-2022-x
12.
Ning
,
J.
, and
Liang
,
S. Y.
,
2019
, “
Inverse Identification of Johnson-Cook Material Constants Based on Modified Chip Formation Model and Iterative Gradient Search Using Temperature and Force Measurements
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
2865
2876
. 10.1007/s00170-019-03286-0
13.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1999
, “
Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
577
585
. 10.1115/1.2833062
14.
Shrota
,
A.
, and
Bäker
,
M.
,
2012
, “
A Study of Non-Uniqueness During the Inverse Identification of Material Parameters
,”
Procedia CIRP
,
1
, pp.
72
77
. 10.1016/j.procir.2012.04.011
15.
Zabel
,
A.
,
Rödder
,
T.
, and
Tiffe
,
M.
,
2017
, “
Material Testing and Chip Formation Simulation for Different Heat Treated Workpieces of 51CrV4 Steel
,”
Procedia CIRP
,
58
, pp.
181
186
. 10.1016/j.procir.2017.03.218
16.
Aviral
,
S.
, and
Martin
,
B.
,
2011
, “
How to Identify Johnson-Cook Parameters From Machining Simulations
,”
AIP Conference Proceedings
,
1353
(
1
), pp.
29
34
. https://doi.org/10.1063/1.3589487
17.
Saleem
,
W.
,
Zain-ul-abdein
,
M.
,
Ijaz
,
H.
,
Mahfouz
,
A. S. B.
,
Ahmed
,
A.
,
Asad
,
M.
, and
Mabrouki
,
T.
,
2017
, “
Computational Analysis and Artificial Neural Network Optimization of Dry Turning Parameters—AA2024-T351
,”
Appl. Sci.
,
7
(
6
), p.
642
. 10.3390/app7060642
18.
Mathias
,
A.
,
Aylin
,
A.
, and
Jan-Eric
,
S.
,
2014
, “
Identification of Plasticity Constants From Orthogonal Cutting and Inverse Analysis
,”
Mech. Mater.
,
77
, pp.
43
51
. 10.1016/j.mechmat.2014.07.005
19.
Niaki
,
F. A.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2015
, “
In-Process Tool Flank Wear Estimation in Machining Gamma-Prime Strengthened Alloys Using Kalman Filter
,”
Procedia Manuf.
,
1
, pp.
696
707
. https://doi.org/10.1016/j.promfg.2015.09.018
20.
Martin Bäker
,
A. S.
,
2013
, “
Inverse Parameter Identification With Finite Element Simulations Using Knowledge-Based Descriptors
,”
Comput. Mater. Sci.
,
69
, pp.
128
136
. 10.1016/j.commatsci.2012.11.059
21.
Lalwani
,
D.
,
Mehta
,
N.
, and
Jain
,
P.
,
2009
, “
Extension of Oxley’s Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12–13
), pp.
5305
5312
. 10.1016/j.jmatprotec.2009.03.020
22.
Malakizadi
,
A.
,
Cedergren
,
S.
,
Sadik
,
I.
, and
Nyborg
,
L.
,
2016
, “
Inverse Identification of Flow Stress in Metal Cutting Process Using Response Surface Methodology
,”
Simul. Modell. Pract. Theory
,
60
, pp.
40
53
. 10.1016/j.simpat.2015.09.009
23.
Sagar
,
C. K.
,
Kumar
,
T.
,
Priyadarshini
,
A.
, and
Gupta
,
A. K.
,
2019
, “
Prediction and Optimization of Machining Forces Using Oxley’s Predictive Theory and RSM Approach During Machining of WHAs
,”
Def. Technol.
,
15
(
6
), pp.
923
935
. 10.1016/j.dt.2019.07.004
24.
Chakraborty
,
S.
,
Shaw
,
A.
, and
Banerjee
,
B.
,
2015
, “
An Axisymmetric Model for Taylor Impact Test and Estimation of Metal Plasticity
,”
Proc. R. Soc. A.
,
471
(
2174
), pp.
1
20
. https://doi.org/10.1098/rspa.2014.0556
25.
Campagne-Lambert
,
L.
,
Daridon
,
L.
,
Oussouaddi
,
O.
,
Ahzi
,
S.
, and
Sun
,
X.
,
2008
, “
Simulation of the Taylor Impact Test and Analysis of Damage Evolution Using a Nucleation and Growth Based Approach
,”
Model. Meas. Control
,
77
(
3–4
), pp.
19
35
.
26.
Filho
,
J. M. C.
,
2017
, “
Applying Extended Oxley’s Machining Theory and Particle Swarm Optimization to Model Machining Forces
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
1127
1136
. 10.1007/s00170-016-9155-6
27.
Chen
,
Y.
,
Li
,
H.
, and
Wang
,
J.
,
2015
, “
Further Development of Oxley’s Predictive Force Model for Orthogonal Cutting
,”
Mach. Sci. Technol.: Int. J.
,
19
(
1
), pp.
86
111
. 10.1080/10910344.2014.991026
28.
Ning
,
J.
, and
Liang
,
S. Y.
,
2019
, “
Predictive Modeling of Machining Temperatures with Force–Temperature Correlation Using Cutting Mechanics and Constitutive Relation
,”
Materials
,
12
(
2
), p.
284
. 10.3390/ma12020284
29.
Davis
,
J. R.
,
2004
,
Tensile Testing
, 2nd ed.,
ASM International
,
Materials Park, OH
, pp.
1
283
.
30.
Sassi
,
I.
, and
Ghmari
,
F.
,
2009
, “
The Emissivity of Conductor Gaussian Random Rough Surfaces: The Surface Impedance Boundary Condition Method
,”
Phys. Procedia
,
2
(
3
), pp.
773
779
. 10.1016/j.phpro.2009.11.024
31.
Johnson
,
G.
, and
Cook
,
W.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague
,
Apr. 19–21
, pp
541
547
.
32.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN’95—International Conference on Neural Networks
,
Perth
,
Nov. 27–Dec. 1
, pp.
1942
1948
.
33.
Komvopoulos
,
K.
, and
Erpenbeck
,
S. A.
,
1991
, “
Finite Element Modeling of Orthogonal Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
113
(
3
), pp.
253
267
. 10.1115/1.2899695
34.
Sagar
,
C.
,
Priyadarshini
,
A.
, and
Gupta
,
A.
,
2020
,
Advances in Simulation, Product Design and Development. Lecture Notes on Multidisciplinary Industrial Engineering
,
M. S.
Shunmugam
and
M.
Kanthababu
, eds.,
Springer
,
Singapore
, pp.
227
239
.
35.
Ning
,
J.
, and
Liang
,
S. Y.
,
2019
, “
A Comparative Study of Analytical Thermal Models to Predict the Orthogonal Cutting Temperature of AISI 1045 Steel
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
3109
3119
. 10.1007/s00170-019-03415-9
36.
Wang
,
B.
,
Liu
,
Z.
,
Song
,
Q.
,
Wan
,
Y.
, and
Ren
,
X.
,
2019
, “
A Modified Johnson–Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011012
. 10.1115/1.4041915
You do not currently have access to this content.