Abstract

The scratching test has been a key method to characterize the basic mechanics of material in vast scenarios. Although attentions have been paid to this field for decades, a comprehensive analytical framework, which includes material flow, fracture initiation, and crack propagation, is still missing. The wide application of scratching test and the accurate description of material behaviors in friction is thus limited. To address the problem, an analytical frame model was established in this study. The strain distribution and pileup ratio in the symmetry section of the front ridge was calculated. Furthermore, the ductile fracture law was also included to predict the mechanism and the initiation location of fracture in the scratching process. The predictive results were further validated by scanning electron microscope (SEM) observations of the scratched grooves. The effects of cone angle and material properties on the damage mechanisms of material in the scratching process were studied. It was revealed that the damage mechanism changes from shear failure to tensile failure, and further to plastic deformation with the increase of cone angle and the ratio of yielding stress to Young’s modulus. Finally, a map of the damage mechanism of material in the scratching process was obtained by utilizing the developed model. The presented works are meaningful to the understanding of material behavior in ploughing and helpful in predicting and controlling the surface quality of those parts subject to different machining and forming processes.

References

1.
Akono
,
A. T.
, and
Ulm
,
F. J.
,
2011
, “
Scratch Test Model for the Determination of Fracture Toughness
,”
Eng. Fract. Mech.
,
78
(
2
), pp.
334
342
. 10.1016/j.engfracmech.2010.09.017
2.
Lee
,
K.
,
Marimuthu
,
K. P.
,
Kim
,
C.-L.
, and
Lee
,
H.
,
2018
, “
Scratch-Tip-Size Effect and Change of Friction Coefficient in Nano/Micro Scratch Tests Using XFEM
,”
Tribol. Int.
,
120
, pp.
398
410
. 10.1016/j.triboint.2018.01.003
3.
Zhao
,
H.
,
Zhong
,
Y.
, and
Ma
,
Z.
,
2016
, “
Effects of Indentation Depth on Micro Hardness and Scratch Behavior of Thin Composite Laminate
,”
J. Alloys Compd.
,
680
, pp.
105
108
. 10.1016/j.jallcom.2016.04.108
4.
Akono
,
A. T.
, and
Ulm
,
F. J.
,
2012
, “
Fracture Scaling Relations for Scratch Tests of Axisymmetric Shape
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
379
390
. 10.1016/j.jmps.2011.12.009
5.
Chen
,
X.
,
Öpöz
,
T. T.
, and
Oluwajobi
,
A.
,
2017
, “
Analysis of Grinding Surface Creation by Single-Grit Approach
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121007
. 10.1115/1.4037992
6.
Wredenberg
,
F.
, and
Larsson
,
P.-L.
,
2009
, “
Scratch Testing of Metals and Polymers: Experiments and Numerics
,”
Wear
,
266
(
1
), pp.
76
83
. 10.1016/j.wear.2008.05.014
7.
Cao
,
J.
,
Wu
,
Y.
,
Lu
,
D.
,
Fujimoto
,
M.
, and
Nomura
,
M.
,
2014
, “
Material Removal Behavior in Ultrasonic-Assisted Scratching of SiC Ceramics With a Single Diamond Tool
,”
Int. J. Mach. Tools Manuf.
,
79
, pp.
49
61
. 10.1016/j.ijmachtools.2014.02.002
8.
Sedriks
,
A.
, and
Mulhearn
,
T.
,
1963
, “
Mechanics of Cutting and Rubbing in Simulated Abrasive Processes
,”
Wear
,
6
(
6
), pp.
457
466
. 10.1016/0043-1648(63)90281-3
9.
Zhang
,
Y.
,
Li
,
C.
,
Ji
,
H.
,
Yang
,
X.
,
Yang
,
M.
,
Jia
,
D.
,
Zhang
,
X.
,
Li
,
R.
, and
Wang
,
J.
,
2017
, “
Analysis of Grinding Mechanics and Improved Predictive Force Model Based on Material-Removal and Plastic-Stacking Mechanisms
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
67
83
. 10.1016/j.ijmachtools.2017.06.002
10.
Mishra
,
T.
,
de Rooij
,
M.
,
Shisode
,
M.
,
Hazrati
,
J.
, and
Schipper
,
D. J.
,
2019
, “
An Analytical Model to Study the Effect of Asperity Geometry on Forces in Ploughing by an Elliptical Asperity
,”
Tribol. Int.
,
137
, pp.
405
419
. 10.1016/j.triboint.2019.05.015
11.
Kato
,
K.
,
1992
, “
Micro-Mechanisms of Wear—Wear Modes
,”
Wear
,
153
(
1
), pp.
277
295
. 10.1016/0043-1648(92)90274-C
12.
Leroch
,
S.
,
Varga
,
M.
,
Eder
,
S. J.
,
Vernes
,
A.
,
Ripoll
,
M. R.
, and
Ganzenmueller
,
G.
,
2016
, “
Smooth Particle Hydrodynamics Simulation of Damage Induced by a Spherical Indenter Scratching a Viscoplastic Material
,”
Int. J. Solids Struct.
,
81
, pp.
188
202
. 10.1016/j.ijsolstr.2015.11.025
13.
Williams
,
J.
,
1996
, “
Analytical Models of Scratch Hardness
,”
Tribol. Int.
,
29
(
8
), pp.
675
694
. 10.1016/0301-679X(96)00014-X
14.
Gao
,
C.
, and
Liu
,
M.
,
2019
, “
Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper With a Spherical Indenter
,”
Tribol. Lett.
,
67
(
8
), pp.
1
12
. https://doi.org/10.1007/s11249-018-1124-9
15.
Challen
,
J.
, and
Oxley
,
P.
,
1979
, “
An Explanation of the Different Regimes of Friction and Wear Using Asperity Deformation Models
,”
Wear
,
53
(
2
), pp.
229
243
. 10.1016/0043-1648(79)90080-2
16.
Yin
,
X.
, and
Komvopoulos
,
K.
,
2012
, “
A Slip-Line Plasticity Analysis of Sliding Friction of Rough Surfaces Exhibiting Self-Affine (Fractal) Behavior
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
538
555
. 10.1016/j.jmps.2011.10.008
17.
Qiu
,
Z.
,
Liu
,
C.
,
Wang
,
H.
,
Yang
,
X.
,
Fang
,
F.
, and
Tang
,
J.
,
2016
, “
Crack Propagation and the Material Removal Mechanism of Glass–Ceramics by the Scratch Test
,”
J. Mech. Behav. Biomed. Mater.
,
64
, pp.
75
85
. 10.1016/j.jmbbm.2016.07.021
18.
Duan
,
N.
,
Yu
,
Y.
,
Wang
,
W.
, and
Xu
,
X.
,
2017
, “
Analysis of Grit Interference Mechanisms for the Double Scratching of Monocrystalline Silicon Carbide by Coupling the FEM and SPH
,”
Int. J. Mach. Tools Manuf.
,
120
, pp.
49
60
. 10.1016/j.ijmachtools.2017.04.012
19.
Azarkhin
,
A.
, and
Devenpeck
,
M. L.
,
1997
, “
Enhanced Model of a Plowing Asperity
,”
Wear
,
206
(
1–2
), pp.
147
155
. 10.1016/S0043-1648(96)07502-3
20.
Linke
,
B. S.
,
Garretson
,
I.
,
Torner
,
F.
, and
Seewig
,
J.
,
2017
, “
Grinding Energy Modeling Based on Friction, Plowing, and Shearing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121009
. 10.1115/1.4037239
21.
Wang
,
H.
, and
Subhash
,
G.
,
2002
, “
Mechanics of Mixed-Mode Ductile Material Removal With a Conical Tool and the Size Dependence of the Specific Energy
,”
J. Mech. Phys. Solids
,
50
(
6
), pp.
1269
1296
. 10.1016/S0022-5096(01)00126-0
22.
Bucaille
,
J. L.
, and
Felder
,
E.
,
2002
, “
Finite-Element Analysis of Deformation During Indentation and Scratch Tests on Elastic-Perfectly Plastic Materials
,”
Philos. Mag. A
,
82
(
10
), pp.
2003
2012
. 10.1080/01418610208235712
23.
Subhash
,
G.
, and
Zhang
,
W.
,
2002
, “
Investigation of the Overall Friction Coefficient in Single-Pass Scratch Test
,”
Wear
,
252
(
1–2
), pp.
123
134
. 10.1016/S0043-1648(01)00852-3
24.
Bellemare
,
S.
,
Dao
,
M.
, and
Suresh
,
S.
,
2007
, “
The Frictional Sliding Response of Elasto-Plastic Materials in Contact With a Conical Indenter
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1970
1989
. 10.1016/j.ijsolstr.2006.08.008
25.
Zhang
,
T.
,
Jiang
,
F.
,
Yan
,
L.
, and
Xu
,
X.
,
2018
, “
Research on the Size Effect of Specific Cutting Energy Based on Numerical Simulation of Single Grit Scratching
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071017
. 10.1115/1.4039916
26.
Elwasli
,
F.
,
Zemzemi
,
F.
,
Mkaddem
,
A.
,
Mzali
,
S.
, and
Mezlini
,
S.
,
2015
, “
A 3D Multi-Scratch Test Model for Characterizing Material Removal Regimes in 5083-Al Alloy
,”
Mater. Des.
,
87
, pp.
352
362
. 10.1016/j.matdes.2015.07.121
27.
Wang
,
H.
,
Ning
,
F.
,
Li
,
Y.
,
Hu
,
Y.
, and
Cong
,
W.
,
2019
, “
Scratching-Induced Surface Characteristics and Material Removal Mechanisms in Rotary Ultrasonic Surface Machining of CFRP
,”
Ultrasonics
,
97
, pp.
19
28
. 10.1016/j.ultras.2019.04.004
28.
Zheng
,
X.
,
Zhu
,
H.
,
Kiet Tieu
,
A.
, and
Kosasih
,
B.
,
2013
, “
A Molecular Dynamics Simulation of 3D Rough Lubricated Contact
,”
Tribol. Int.
,
67
, pp.
217
221
. 10.1016/j.triboint.2013.07.015
29.
Shugurov
,
A.
,
Panin
,
A.
,
Dmitriev
,
A.
, and
Nikonov
,
A.
,
2018
, “
The Effect of Crystallographic Grain Orientation of Polycrystalline Ti on Ploughing Under Scratch Testing
,”
Wear
,
408–409
, pp.
214
221
. 10.1016/j.wear.2018.05.013
30.
James
,
S.
, and
Sundaram
,
M.
,
2017
, “
A Molecular Dynamics Simulation Study of Material Removal Mechanisms in Vibration Assisted Nano Impact-Machining by Loose Abrasives
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081014
. 10.1115/1.4036559
31.
De Vathaire
,
M.
,
Delamare
,
F.
, and
Felder
,
E.
,
1981
, “
An Upper Bound Model of Ploughing by a Pyramidal Indenter
,”
Wear
,
66
(
1
), pp.
55
64
. 10.1016/0043-1648(81)90032-6
32.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction
,
Springer
,
New York
.
33.
Rovinelli
,
A.
,
Sangid
,
M. D.
,
Proudhon
,
H.
, and
Ludwig
,
W.
,
2018
, “
Using Machine Learning and a Data-Driven Approach to Identify the Small Fatigue Crack Driving Force in Polycrystalline Materials
,”
NPJ Comput. Mater.
,
4
(
1
), p.
35
. 10.1038/s41524-018-0094-7
34.
Li
,
X.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2019
, “
Machine-Learning Based Temperature- and Rate-Dependent Plasticity Model: Application to Analysis of Fracture Experiments on DP Steel
,”
Int. J. Plast.
,
118
, pp.
320
344
. 10.1016/j.ijplas.2019.02.012
35.
Moore
,
B. A.
,
Rougier
,
E.
,
O’Malley
,
D.
,
Srinivasan
,
G.
,
Hunter
,
A.
, and
Viswanathan
,
H.
,
2018
, “
Predictive Modeling of Dynamic Fracture Growth in Brittle Materials With Machine Learning
,”
Comput. Mater. Sci.
,
148
, pp.
46
53
. 10.1016/j.commatsci.2018.01.056
36.
Pandya
,
K. S.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2020
, “
Strain Rate and Temperature Dependent Fracture of Aluminum Alloy 7075: Experiments and Neural Network Modeling
,”
Int. J. Plast.
,
135
, p.
102788
. 10.1016/j.ijplas.2020.102788
37.
Bucaille
,
J. L.
,
Felder
,
E.
, and
Hochstetter
,
G.
,
2001
, “
Mechanical Analysis of the Scratch Test on Elastic and Perfectly Plastic Materials With the Three-Dimensional Finite Element Modeling
,”
Wear
,
249
(
5–6
), pp.
422
432
. 10.1016/S0043-1648(01)00538-5
38.
Oyane
,
M.
,
Sato
,
T.
,
Okimoto
,
K.
, and
Shima
,
S.
,
1980
, “
Criteria for Ductile Fracture and Their Applications
,”
J. Mech. Work. Technol.
,
4
(
1
), pp.
65
81
. 10.1016/0378-3804(80)90006-6
39.
Ran
,
J. Q.
, and
Fu
,
M. W.
,
2014
, “
A Hybrid Model for Analysis of Ductile Fracture in Micro-Scaled Plastic Deformation of Multiphase Alloys
,”
Int. J. Plast.
,
61
, pp.
1
16
. 10.1016/j.ijplas.2013.11.006
40.
Li
,
H.
,
Fu
,
M. W.
,
Lu
,
J.
, and
Yang
,
H.
,
2011
, “
Ductile Fracture: Experiments and Computations
,”
Int. J. Plast.
,
27
(
2
), pp.
147
180
. 10.1016/j.ijplas.2010.04.001
41.
von Stebut
,
J.
,
Rezakhanlou
,
R.
,
Anoun
,
K.
,
Michel
,
H.
, and
Gantois
,
M.
,
1989
, “
Major Damage Mechanisms During Scratch and Wear Testing of Hard Coatings on Hard Substrates
,”
Thin Solid Films
,
181
(
1–2
), pp.
555
564
. 10.1016/0040-6090(89)90524-5
42.
Deuis
,
R. L.
,
Subramanian
,
C.
, and
Yellup
,
J. M.
,
1996
, “
Abrasive Wear of Aluminium Composites—A Review
,”
Wear
,
201
(
1–2
), pp.
132
144
. 10.1016/S0043-1648(96)07228-6
43.
Peng
,
L. F.
,
Mao
,
M. Y.
,
Fu
,
M. W.
, and
Lai
,
X. M.
,
2016
, “
Effect of Grain Size on the Adhesive and Ploughing Friction Behaviours of Polycrystalline Metals in Forming Process
,”
Int. J. Mech. Sci.
,
117
, pp.
197
209
. 10.1016/j.ijmecsci.2016.08.022
44.
Mao
,
M.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2016
, “
Modeling of the Friction Behavior in Metal Forming Process Considering Material Hardening and Junction Growth
,”
ASME J. Tribol.
,
138
(
1
), p.
012202
. 10.1115/1.4031395
45.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
. 10.1115/1.2831200
46.
Li
,
K.
,
Shapiro
,
Y.
, and
Li
,
J.
,
1998
, “
Scratch Test of Soda-Lime Glass
,”
Acta Mater.
,
46
(
15
), pp.
5569
5578
. 10.1016/S1359-6454(98)00163-3
47.
Krop
,
S.
,
Meijer
,
H. E.
, and
van Breemen
,
L. C.
,
2016
, “
Finite Element Modeling and Experimental Validation of Single-Asperity Sliding Friction of Diamond Against Reinforced and Non-Filled Polycarbonate
,”
Wear
,
356
, pp.
77
85
. 10.1016/j.wear.2016.03.014
You do not currently have access to this content.