Abstract

Grinding is an indispensable phase in the gear production chain as it allows very stringent requirements characteristic of the automotive sector to be satisfied. The main goal of this finishing process is to ensure compliance with the surface integrity and dimensional tolerance specifications of the product. A single-grain grinding FEM model has been implemented to predict grinding load values based on real grain geometry using a set of Johnson & Cook coefficients able to represent the flow stress curve of a typical gear case-hardened steel 27MnCr5. Grain geometry acquired through computed tomography was imported into three-dimensional process simulation software DEFORM-3D. As the use of real grain geometry leads to time-consuming simulations, an equivalent defined geometry grain was implemented to compare the cutting behavior and calculate maximum force values through real contact area analysis under the same process parameters. Calculated loads were subsequently compared with experimental results, showing good agreement with a maximum percentage difference less than 13% for two different grain geometries. Grinding force measurements were performed in a single-grain configuration on a CNC surface grinding machine adopting a wheel speed of 384 rad/s, a feed rate of 8.6 mm/s and a depth of cut of 0.1 mm.

References

1.
Guerrini
,
G.
,
Landi
,
E.
,
Peiffer
,
K.
, and
Fortunato
,
A.
,
2018
, “
Dry Grinding of Gears for Sustainable Automotive Transmission Production
,”
J. Cleaner Prod.
,
176
, pp.
76
88
.
2.
He
,
B.
,
Wei
,
C.
,
Ding
,
S.
, and
Shi
,
Z.
,
2019
, “
A Survey of Methods for Detecting Metallic Grinding Burn
,”
Meas. J. Int. Meas. Confed.
,
134
, pp.
426
439
.
3.
Brinksmeier
,
E.
,
Aurich
,
J. C.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H.-W.
,
Klocke
,
F.
,
Peters
,
J.
,
Rentsch
,
R.
,
Stephenson
,
D. J.
,
Uhlmann
,
E.
,
Weinert
,
K.
, and
Wittmann
,
M.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann.—Manuf. Technol.
,
55
(
2
), pp.
667
696
.
4.
Doman
,
D. A.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2009
, “
Finite Element Modeling Approaches in Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
2
), pp.
109
116
.
5.
Mohamed
,
A. M. O.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2012
, “
Variable Heat Flux in Numerical Simulation of Grinding Temperatures
,”
Int. J. Adv. Manuf. Technol.
,
63
(
5–8
), pp.
549
554
.
6.
Anderson
,
D.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2008
, “
Experimental Validation of Numerical Thermal Models for dry Grinding
,”
J. Mater. Process. Technol.
,
204
(
1–3
), pp.
269
278
.
7.
Linke
,
B.
,
Duscha
,
M.
,
Vu
,
A. T.
, and
Klocke
,
F.
,
2011
, “
FEM-Based Simulation of Temperature in Speed Stroke Grinding with 3D Transient Moving Heat Sources
,”
Adv. Mater. Res.
,
223
, pp.
733
742
.
8.
Malkin
,
S.
, and
Guo
,
C.
,
2007
, “
Thermal Analysis of Grinding
,”
CIRP Ann.—Manuf. Technol.
,
56
(
2
), pp.
760
782
.
9.
Guo
,
C.
, and
Malkin
,
S.
,
2000
, “
Energy Partition and Cooling During Grinding
,”
J. Manuf. Process.
,
2
(
3
), pp.
151
157
.
10.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
CIRP Ann.
,
41
(
2
), pp.
677
688
. ISSN 0007-8506.
11.
Chen
,
X.
, and
Rowe
,
W. B.
,
1996
, “
Analysis and Simulation of the Grinding Process. Part I: Generation of the Grinding Wheel Surface
,”
Int. J. Mach. Tools Manuf.
,
36
(
8
), pp.
871
882
.
12.
Chen
,
X.
, and
Brian Rowe
,
W.
,
1996
, “
Analysis and Simulation of the Grinding Process. Part II: Mechanics of Grinding
,”
Int. J. Mach. Tools Manuf.
,
36
(
8
), pp.
883
896
.
13.
Chen
,
X.
,
Rowe
,
W. B.
,
Mills
,
B.
, and
Allanson
,
D. R.
,
1996
, “
Analysis and Simulation of the Grinding Process. Part III: Comparison with Experiment
,”
Int. J. Mach. Tools Manuf.
,
36
(
8
), pp.
897
906
.
14.
Chen
,
X.
,
Rowe
,
W. B.
,
Mills
,
B.
, and
Allanson
,
D. R.
,
1998
, “
Analysis and Simulation of the Grinding Process. Part IV: Effects of Wheel Wear
,”
Int. J. Mach. Tools Manuf.
,
38
(
1–2
), pp.
41
49
.
15.
Aurich
,
J. C.
,
Braun
,
O.
,
Warnecke
,
G.
, and
Cronjäger
,
L.
,
2003
, “
Development of a Superabrasive Grinding Wheel with Defined Grain Structure Using Kinematic Simulation
,”
CIRP Ann.—Manuf. Technol.
,
52
(
1
), pp.
275
280
.
16.
Warnecke
,
G.
, and
Zitt
,
U.
,
1998
, “
Kinematic Simulation for Analyzing and Predicting High-Performance Grinding Processes
,”
CIRP Ann.—Manuf. Technol.
,
47
(
1
), pp.
265
270
.
17.
Hecker
,
R. L.
,
Liang
,
S. Y.
,
Wu
,
X. J.
,
Xia
,
P.
, and
Jin
,
D. G. W.
,
2007
, “
Grinding Force and Power Modeling Based on Chip Thickness Analysis
,”
Int. J. Adv. Manuf. Technol.
,
33
(
5–6
), pp.
449
459
.
18.
Li
,
H. N.
,
Yu
,
T. B.
,
Wang
,
Z. X.
,
Da Zhu
,
L.
, and
Wang
,
W. S.
,
2017
, “
Detailed Modeling of Cutting Forces in Grinding Process Considering Variable Stages of Grain-Workpiece Micro Interactions
,”
Int. J. Mech. Sci.
,
126
(
May 2016
), pp.
319
339
.
19.
Dai
,
J.
,
Ding
,
W.
,
Zhang
,
L.
,
Xu
,
J.
, and
Su
,
H.
,
2015
, “
Understanding the Effects of Grinding Speed and Undeformed Chip Thickness on the Chip Formation in High-Speed Grinding
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
995
1005
.
20.
Badger
,
J. A.
, and
Torrance
,
A. A.
,
2000
, “
Comparison of two Models to Predict Grinding Forces From Wheel Surface Topography
,”
Int. J. Mach. Tools Manuf.
,
40
(
8
), pp.
1099
1120
.
21.
Anderson
,
D.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2011
, “
Experimental and Numerical Investigations of Single Abrasive-Grain Cutting
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
898
910
.
22.
Yang
,
J. G.
,
Zhou
,
Z. X.
,
Li
,
B. Z.
, and
Zhu
,
D. H.
,
2011
, “
Study on the Simulation Model and High-Speed Characteristics of Cylindrical Grinding
,”
Adv. Mater. Res.
,
223
, pp.
826
835
.
23.
Chen
,
X.
,
Opoz
,
T. T.
, and
Oluwajobi
,
A.
,
2017
, “
Analysis of Grinding Surface Creation by Single-Grit Approach
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121007
.
24.
Cai
,
G. Q.
,
Feng
,
B. F.
,
Jin
,
T.
, and
Gong
,
Y. D.
,
2002
, “
Study on the Friction Coefficient in Grinding
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
25
29
.
25.
Barge
,
M.
,
Hamdi
,
H.
,
Rech
,
J.
, and
Bergheau
,
J. M.
,
2005
, “
Numerical Modelling of Orthogonal Cutting: Influence of Numerical Parameters
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1148
1153
.
26.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.—Manuf. Technol.
,
62
(
2
), pp.
695
718
.
27.
Wang
,
C.
,
Ding
,
F.
,
Tang
,
D.
,
Zheng
,
L.
,
Li
,
S.
, and
Xie
,
Y.
,
2016
, “
Modeling and Simulation of the High-Speed Milling of Hardened Steel SKD11 (62 HRC) Based on SHPB Technology
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
13
26
.
28.
Guerrini
,
G.
,
Lerra
,
F.
, and
Fortunato
,
A.
,
2019
, “
The Effect of Radial Infeed on Surface Integrity in dry Generating Gear Grinding for Industrial Production of Automotive Transmission Gears
,”
J. Manuf. Process.
,
45
, pp.
234
241
.
29.
Eisseler
,
R.
,
Drewle
,
K.
,
Grötzinger
,
K. C.
, and
Möhring
,
H. C.
,
2018
, “
Using an Inverse Cutting Simulation-Based Method to Determine the Johnson-Cook Material Constants of Heat-Treated Steel
,”
Procedia CIRP
,
77
(Hpc), pp.
26
29
.
30.
Guerrini
,
G.
,
Lutey
,
A. H. A.
,
Melkote
,
S. N.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2019
, “
Dry Generating Gear Grinding: Hierarchical two-Step Finite Element Model for Process Optimization
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061005
.
You do not currently have access to this content.