Abstract

Thermo-hydroforming (THF) process is a single-step process for thermoplastic composite forming, which has a great advantage in terms of the process time and mass production potential as compared to conventional processes. However, with THF processes, wrinkles and deformations are easily generated due to the process characteristics and process parameters. In this study, the matrix material was examined by considering viscoelasticity and changes in formability according to the forming speed. A numerical analysis of the THF composites was performed based on the preferred fiber orientation (PFO) analysis model, which considers the viscoelasticity of the matrix. The deformation change and molding possibility were examined according to various forming speeds. The viscoelastic PFO model showed better analysis efficiency and stability than the primitive PFO model. This analysis will help improve the process of forming thermoplastic composites.

References

1.
Akif Yalcinkaya
,
M.
,
Guloglu
,
G. E.
,
Pishvar
,
M.
,
Amirkhosravi
,
M.
,
Murat Sozer
,
E.
, and
Cengiz Altan
,
M.
,
2019
, “
Pressurized Infusion: A New and Improved Liquid Composite Molding Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011007
.
2.
Thakur
,
C.
,
Alqosaibi
,
K.
,
Kundu
,
A.
, and
Coulter
,
J. P.
,
2020
, “
Development of Advanced Hybrid Polymer Melt Delivery Systems for Efficient High Precision Injection Molding
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071004
.
3.
Jia
,
Z.
,
Han
,
Z. R.
,
Xiao
,
Y.
,
Ji
,
S. D.
, and
Xu
,
B.
,
2019
, “
Forming Mechanism of Asymmetric Cylinder With Oblique–Straight Flange Spinning
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061012
.
4.
Schenke
,
C.
, and
Weber
,
J.
,
2019
, “
Energy Efficiency of Displacement Control Drive Systems in Hydraulic Forming Presses
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041013
.
5.
Pourboghrat
,
F.
,
Zampaloni
,
M. A.
, and
Benard
,
A.
,
2003
, “
Hydroforming of Composite Materials
,” US6631630.
6.
Zampaloni
,
M.
,
Abedrabbo
,
N.
, and
Pourboghrat
,
F.
,
2003
, “
Experimental and Numerical Study of Stamp Hydroforming of Sheet Metals
,”
Int. J. Mech. Sci.
,
45
(
11
), pp.
1815
1848
.
7.
Zampaloni
,
M. A.
,
2003
, “
A Multi-Preferred Fiber Orientation Constitutive Model for Fiber Mat Reinforced Thermoplastics with a Random Orientation Applied to the Stamp Thermo-Hydroforming Process
,”
Ph.D. thesis
,
Michigan State University
,
East Lansing, MI
.
8.
Ahn
,
H.
,
Kuuttila
,
N. E.
, and
Pourboghrat
,
F.
,
2018
, “
Mechanical Analysis of Thermo-Hydroforming of a Fiber-Reinforced Thermoplastic Composite Helmet Using Preferred Fiber Orientation Model
,”
J. Compos. Mater.
,
52
(
23
), pp.
3183
3198
.
9.
Badel
,
P.
,
Gauthier
,
S.
,
Vidal-Sallé
,
E.
, and
Boisse
,
P.
,
2009
, “
Rate Constitutive Equations for Computational Analyses of Textile Composite Reinforcement Mechanical Behaviour During Forming
,”
Composites Part A
,
40
(
8
), pp.
997
1007
.
10.
Drozdov
,
A. D.
,
Christiansen
,
J. D.
,
Klitkou
,
R.
, and
Potarniche
,
C. G.
,
2010
, “
Viscoelasticity and Viscoplasticity of Polypropylene/Polyethylene Blends
,”
Int. J. Solids Struct.
,
47
(
18
), pp.
2498
2507
.
11.
Beyler
,
C. L.
, and
Hirschler
,
M. M.
,
2002
,
SFPE Handbook of Fire Protection Engineering
,
Springer
,
New York
, pp.
110
131
.
12.
Yu
,
W. R.
,
Pourboghrat
,
F.
,
Chung
,
K.
,
Zampaloni
,
M.
, and
Kang
,
T. J.
,
2002
, “
Non-orthogonal Constitutive Equation for Woven Fabric Reinforced Thermoplastic Composites
,”
Composites Part A
,
33
(
8
), pp.
1095
1105
.
13.
Yu
,
W.-R.
,
Harrison
,
P.
, and
Long
,
A.
,
2005
, “
Finite Element Forming Simulation for Non-crimp Fabrics Using a Non-orthogonal Constitutive Equation
,”
Composites Part A
,
36
(
8
), pp.
1079
1093
.
14.
Yu
,
W. R.
,
Zampaloni
,
M.
,
Pourboghrat
,
F.
,
Chung
,
K.
, and
Kang
,
T. J.
,
2005
, “
Analysis of Flexible Bending Behavior of Woven Preform Using Non-orthogonal Constitutive Equation
,”
Composites Part A
,
36
(
6
), pp.
839
850
.
15.
Krajcinovic
,
D.
,
2000
, “
Damage Mechanics: Accomplishments, Trends and Needs
,”
Int. J. Solids Struct.
,
37
(
1
), pp.
267
277
.
16.
Chen
,
J. K.
,
Allahdadi
,
F. A.
, and
Sun
,
C. T.
,
1997
, “
A Quadratic Yield Function for Fiber-Reinforced Composites
,”
J. Compos. Mater.
,
31
(
8
), pp.
788
811
.
17.
Weeks
,
C. A.
, and
Sun
,
C. T.
,
1998
, “
Modeling Non-linear Rate-Dependent Behavior in Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
58
(
3
), pp.
603
611
.
18.
Thiruppukuzhi
,
S. V.
, and
Sun
,
C. T.
,
2001
, “
Models for the Strain-Rate-Dependent Behavior of Polymer Composites
,”
Compos. Sci. Technol.
,
61
(
1
), pp.
1
12
.
19.
Chung
,
K.
, and
Ryou
,
H.
,
2009
, “
Development of Viscoelastic/Rate-Sensitive-Plastic Constitutive Law for Fiber-Reinforced Composites and Its Applications. Part I: Theory and Material Characterization
,”
Compos. Sci. Technol.
,
69
(
2
), pp.
284
291
.
20.
Ryou
,
H.
, and
Chung
,
K.
,
2009
, “
Development of Viscoelastic/Rate-Sensitive-Plastic Constitutive Law for Fiber-Reinforced Composites and Its Applications Part II: Numerical Formulation and Verification
,”
Compos. Sci. Technol.
,
69
(
2
), pp.
292
299
.
21.
Ahn
,
H.
,
Kuuttila
,
N. E.
, and
Pourboghrat
,
F.
,
2021
, “
Effects of Pressure, Boundary Conditions, and Cutting Reliefs on Thermo-Hydroforming of Fiber-Reinforced Thermoplastic Composite Helmet Based on Numerical Optimization
,”
J. Thermoplast. Compos. Mater.
,
34
(
2
), pp.
181
202
.
22.
Greenhalgh
,
E. S.
,
Bloodworth
,
V. M.
,
Iannucci
,
L.
, and
Pope
,
D.
,
2013
, “
Fractographic Observations on Dyneema® Composites Under Ballistic Impact
,”
Composites Part A
,
44
, pp.
51
62
.
23.
Dávila
,
C. G.
,
Camanho
,
P. P.
, and
Turon
,
A.
,
2008
, “
Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements
,”
J. Aircr.
,
45
(
2
), pp.
663
672
.
24.
Kushch
,
V. I.
,
Shmegera
,
S. V.
, and
Mishnaevsky
,
L.
,
2011
, “
Explicit Modeling the Progressive Interface Damage in Fibrous Composite: Analytical vs. Numerical Approach
,”
Compos. Sci. Technol.
,
71
(
7
), pp.
989
997
.
25.
Liu
,
G.
,
Thouless
,
M. D.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2014
, “
Collapse of a Composite Beam Made From Ultra High Molecular-Weight Polyethylene Fibres
,”
J. Mech. Phys. Solids
,
63
, pp.
320
335
.
26.
Kawai
,
M.
,
Masuko
,
Y.
,
Kawase
,
Y.
, and
Negishi
,
R.
,
2001
, “
Micromechanical Analysis of the Off-Axis Rate-Dependent Inelastic Behavior of Unidirectional AS4/PEEK at High Temperature
,”
Int. J. Mech. Sci.
,
43
(
9
), pp.
2069
2090
.
27.
Rémond
,
Y.
,
2005
, “
Constitutive Modelling of Viscoelastic Unloading of Short Glass Fibre-Reinforced Polyethylene
,”
Compos. Sci. Technol.
,
65
(
3
), pp.
421
428
.
28.
Xu
,
T.
, and
Farris
,
R. J.
,
2005
,
New Polymeric Materials
,
American Chemical Society
,
Washington, DC
, pp.
391
405
.
29.
Kim
,
Y. K.
, and
White
,
S. R.
,
1996
, “
Stress Relaxation Behavior of 3501-6 Epoxy Resin During Cure
,”
Polym. Eng. Sci.
,
36
(
23
), pp.
2852
2862
.
30.
Pourboghrat
,
F.
,
Karabin
,
M. E.
,
Becker
,
R. C.
, and
Chung
,
K.
,
2000
, “
A Hybrid Membrane/Shell Method for Calculating Springback of Anisotropic Sheet Metals Undergoing Axisymmetric Loading
,”
Int. J. Plast.
,
16
(
6
), pp.
677
700
.
You do not currently have access to this content.