Abstract

The residual stresses could affect the ability of components to bear loading conditions and also the performance. The researchers considered workpiece surface as a plane and ignored the effect of surface topography induced by the intermittent cutting process when modeling residual stresses. The aim of this research develops an analytical model to predict workpiece residual stresses during intermittent machining by correlating the effect of surface topography. The relative motions of tool and workpiece are analyzed for modeling thermal-mechanical and surface topography. The influence of dynamic cutting force and thermal on different positions of surface topography is also considered in the analytical model. Then, the residual stresses model with the surface topography effect can be developed in intermittent cutting. The analytical models of dynamic cutting force, surface topography, and residual stresses are verified by the experiments. The variation trend of evaluated values of the residual stress of workpiece is basically consistent with that of measured values. The compressive residual stress of the workpiece surface in highest point of the surface topography is higher than that in the lowest point.

References

1.
Oh
,
K. J.
,
Cao
,
L.
, and
Chung
,
S. C.
,
2020
, “
Explicit Modeling and Investigation of Friction Torques in Double-Nut Ball Screws for the Precision Design of Ball Screw Feed Drives
,”
Tribol. Int.
,
141
(
1
), p.
105841
.
2.
Umbrello
,
D.
,
2011
, “
Influence of Material Microstructure Changes on Surface Integrity in Hard Machining of AISI 52100 Steel
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9–12
), pp.
887
898
.
3.
D’Oliveira
,
A. L. R.
,
Rego
,
R. R.
, and
De
,
F. A. R.
,
2020
, “
Residual Stresses Prediction in Machining: Hybrid FEM Enhanced by Assessment of Plastic Flow
,”
J. Mater. Process. Technol.
,
275
(
1
), p.
116332
.
4.
Ma
,
Y.
,
Feng
,
P.
,
Zhang
,
J.
,
Wu
,
Z.
, and
Yu
,
D.
,
2016
, “
Prediction of Surface Residual Stress After End Milling Based on Cutting Force and Temperature
,”
J. Mater. Process. Technol.
,
235
(
9
), pp.
41
48
.
5.
de Paula Oliveira
,
G.
,
Fonseca
,
M. C.
, and
Araujo
,
A. C.
,
2017
, “
Analysis of Residual Stress and Cutting Force in End Milling of Inconel 718 Using Conventional Flood Cooling and Minimum Quantity Lubrication
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9
), pp.
3265
3272
.
6.
Daoud
,
M.
,
Chatelain
,
J. F.
, and
Bouzid
,
A.
,
2017
, “
Effect of Rake Angle-Based Johnson-Cook Material Constants on the Prediction of Residual Stresses and Temperatures Induced in Al2024-T3 Machining
,”
Int. J. Mech. Sci.
,
122
(
3
), pp.
392
404
.
7.
Tounsi
,
N.
, and
El-Wardany
,
T.
,
2022
, “
Finite Element Analysis of the Effects of Process Representations on the Prediction of Residual Stresses and Chip Morphology in the Down-Milling of Ti6Al4V: Part I: Milling of Small Uncut Chip Thicknesses in the Micrometer Range With Finite Cutting Edge Radius
,”
ASME J. Manuf. Sci. Eng.
,
144
(
1
), p.
011010
.
8.
Tounsi
,
N.
, and
El-Wardany
,
T.
,
2022
, “
Finite Element Analysis of the Effects of Process Representations on the Prediction of Residual Stresses and Chip Morphology in the Down-Milling of Ti6Al4V: Part II: Effect of Flank Wear and Conventional Uncut Chip Thicknesses in Milling With Finite Cutting Edge Radius
,”
ASME J. Manuf. Sci. Eng.
,
144
(
1
), p.
011011
.
9.
Fan
,
Y.
,
Wang
,
T.
,
Hao
,
Z.
,
Liu
,
X.
,
Gao
,
S.
, and
Li
,
R.
,
2018
, “
Surface Residual Stress in High Speed Cutting of Superalloy Inconel718 Based on Multiscale Simulation
,”
J. Manuf. Processes
,
31
(
1
), pp.
480
493
.
10.
Wan
,
M.
,
Ye
,
X.
,
Yang
,
Y.
, and
Zhang
,
W.
,
2017
, “
Theoretical Prediction of Machining-Induced Residual Stresses in Three-Dimensional Oblique Milling Processes
,”
Int. J. Mech. Sci.
,
133
(
11
), pp.
426
437
.
11.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M. A.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.
,
62
(
2
), pp.
695
718
.
12.
Merwin
,
J. E.
, and
Johnson
,
K. L.
,
1963
, “
An Analysis of Plastic Deformation in Rolling Contact
,”
Proc. Inst. Mech. Eng.
,
177
(
25
), pp.
676
690
.
13.
Ulutan
,
D.
,
Alaca
,
B. E.
, and
Lazoglu
,
I.
,
2007
, “
Analytical Modelling of Residual Stresses in Machining
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
77
87
.
14.
Lazoglu
,
I.
,
Ulutan
,
D.
,
Alaca
,
B. E.
,
Engin
,
S.
, and
Kaftanoglu
,
B.
,
2008
, “
An Enhanced Analytical Model for Residual Stress Prediction in Machining
,”
CIRP Ann.
,
57
(
1
), pp.
81
84
.
15.
Huang
,
K.
, and
Yang
,
W.
,
2016
, “
Analytical Modeling of Residual Stress Formation in Workpiece Material Due to Cutting
,”
Int. J. Mech. Sci.
,
114
(
8
), pp.
21
34
.
16.
Zhou
,
R.
, and
Yang
,
W.
,
2017
, “
Analytical Modeling of Residual Stress in Helical end Milling of Nickel-Aluminum Bronze
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
987
996
.
17.
Peng
,
F. Y.
,
Dong
,
Q.
,
Yan
,
R.
,
Zhou
,
L.
, and
Zhan
,
C.
,
2016
, “
Analytical Modeling and Experimental Validation of Residual Stress in Micro-End-Milling
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3411
3424
.
18.
Su
,
J.
,
Young
,
K. A.
,
Ma
,
K.
,
Srivatsa
,
S.
,
Morehouse
,
J. B.
, and
Liang
,
S. Y.
,
2013
, “
Modeling of Residual Stresses in Milling
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5–8
), pp.
717
733
.
19.
Song
,
S.
, and
Zuo
,
D.
,
2014
, “
Modelling and Simulation of Whirling Process Based on Equivalent Cutting Volume
,”
Simul. Model. Pract. Theory
,
42
(
3
), pp.
98
106
.
20.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2000
, “
Thermal Modeling of the Metal Cutting Process: Part I-Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
(
9
), pp.
1715
1752
.
21.
Chou
,
Y. K.
, and
Song
,
H.
,
2003
, “
Thermal Modeling for Hard Turning Using a New Tool
,”
ASME 2003 International Mechanical Engineering Congress and Exposition
, pp.
1
10
.
22.
Karpat
,
Y.
, and
Ozel
,
T.
,
2006
, “
Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
435
444
.
23.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process Part II—Temperature Rise Distribution Due to Frictional Heat Source at the Tool-Chip Interface
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
57
88
.
24.
Zhu
,
K.
, and
Zhang
,
Y.
,
2017
, “
Modeling of the Instantaneous Milling Force per Tooth With Tool Run-Out Effect in High Speed Ball-End Milling
,”
Int. J. Mach. Tools. Manuf.
,
118
(
8
), pp.
37
48
.
25.
Altintas
,
Y.
,
2000
,
Manufacturing Automation Metal Cutting Mechanics, Machine Tool Variations, and CNC Design
,
Cambridge University Press
,
UK
.
26.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
27.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
28.
Lalwani
,
D. I.
,
Mehta
,
N. K.
, and
Jain
,
P. K.
,
2009
, “
Extension of Oxley’s Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12
), pp.
5305
5312
.
29.
Cohen
,
G.
,
Gilles
,
P.
,
Segonds
,
S.
,
Mousseigne
,
M.
, and
Lagarrigue
,
P.
,
2012
, “
Thermal and Mechanical Modeling During Dry Turning Operations
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1
), pp.
133
140
.
30.
Tounsi
,
N.
,
Vincenti
,
J.
, and
Otho
,
M. A.
,
2002
, “
From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach. Tools. Manuf.
,
42
(
12
), pp.
1373
1383
.
31.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
An Analytical Approach to Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
,
116
(
3
), pp.
577
587
.
32.
Qi
,
Z.
,
Li
,
B.
, and
Xiong
,
L.
,
2014
, “
An Improved Algorithm for McDowell’s Analytical Model of Residual Stress
,”
Front. Mech. Eng.
,
9
(
2
), pp.
150
155
.
33.
Su
,
J. C.
,
2006
, “
Residual Stress Modeling in Machining Processes
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.
34.
Pawar
,
S.
,
Salve
,
A.
,
Chinchanikar
,
S.
,
Kulkarni
,
A. P.
, and
Lamdhade
,
G.
,
2017
, “
Residual Stresses During Hard Turning of AISI 52100 Steel: Numerical Modelling With Experimental Validation
,”
Mater. Today: Proc.
,
4
(
2
), pp.
2350
2359
.
35.
He
,
Y.
,
Liu
,
C.
,
Wang
,
Y.
,
Li
,
Y.
,
Wang
,
S.
,
Wang
,
L.
, and
Wang
,
Y.
,
2019
, “
Analytical Modeling of Temperature Distribution in Lead-Screw Whirling Milling Considering the Transient Un-Deformed Chip Geometry
,”
Int. J. Mech. Sci.
,
157–158
(
7
), pp.
619
632
.
36.
Liu
,
C.
,
He
,
Y.
,
Wang
,
Y.
,
Li
,
Y.
,
Wang
,
S.
,
Wang
,
L.
, and
Wang
,
Y.
,
2019
, “
An Investigation of Surface Topography and Workpiece Temperature in Whirling Milling Machining
,”
Int. J. Mech. Sci.
,
164
(
12
), p.
105182
.
You do not currently have access to this content.