Abstract

The formation of porosity is a major challenge in any composite manufacturing process, particularly in the absence of vacuum assistance. Highly localized injection of polymer matrix into regions of interest in a dry preform is a route to manufacturing multi-matrix fiber-reinforced composites with high filler concentrations, which are otherwise difficult to achieve. Unlike traditional composites, such multi-matrix fiber-reinforced composite systems, which combine multiple resins in continuous form, offer improved structural performance around stress concentrators and multifunctional capabilities. As the process lacks vacuum assistance, porosity becomes a primary issue to be addressed. This paper presents a rheo-kinetic coupled rapid consolidation procedure for optimizing the quality of localized matrix patches. The procedure involves manufacturing trials and analytical consolidation models to determine the best processing program for minimal voidage in the patch. The results provide a step toward an efficient manufacturing process for the optimal design of multi-matrix composites without the need for complex vacuum bag arrangements, thus reducing cost and time while opening avenues to improve overall composite performance.

References

1.
Swolfs
,
Y.
,
Verpoest
,
I.
, and
Gorbatikh
,
L.
,
2019
, “
Recent Advances in Fibre-Hybrid Composites: Materials Selection, Opportunities and Applications
,”
Int. Mater. Rev.
,
64
(
4
), pp.
181
215
.
2.
Gnaba
,
I.
,
Legrand
,
X.
,
Wang
,
P.
, and
Soulat
,
D.
,
2019
, “
Through-The-Thickness Reinforcement for Composite Structures: A Review
,”
J. Ind. Text.
,
49
(
1
), pp.
71
96
.
3.
Qian
,
H.
,
Greenhalgh
,
E. S.
,
Shaffer
,
M. S. P.
, and
Bismarck
,
A.
,
2010
, “
Carbon Nanotube-Based Hierarchical Composites: A Review
,”
J. Mater. Chem.
,
20
(
23
), p.
4751
.
4.
Valorosi
,
F.
,
De Meo
,
E.
,
Blanco-Varela
,
T.
,
Martorana
,
B.
,
Veca
,
A.
,
Pugno
,
N.
,
Kinloch
,
I. A.
, et al
,
2020
, “
Graphene and Related Materials in Hierarchical Fiber Composites: Production Techniques and Key Industrial Benefits
,”
Compos. Sci. Technol.
,
185
, p.
107848
.
5.
Ivanov
,
D. S.
,
White
,
J. A. P.
,
Hendry
,
W.
,
Mahadik
,
Y.
,
Minett
,
V.
,
Patel
,
H.
, and
Ward
,
C.
,
2015
, “
Stabilising Textile Preforms by Means of Liquid Resin Print: A Feasibility Study
,”
Adv Manuf.: Polym. Compos. Sci.
,
1
(
1
), pp.
26
35
.
6.
Turk
,
M. A.
,
Vermes
,
B.
,
Thompson
,
A. J.
,
Belnoue
,
J. P. H.
,
Hallett
,
S. R.
, and
Ivanov
,
D. S.
,
2020
, “
Mitigating Forming Defects by Local Modification of Dry Preforms
,”
Compos. Part A Appl. Sci. Manuf.
,
128
, p.
105643
.
7.
Ivanov
,
D. S.
,
Le Cahain
,
Y. M.
,
Arafati
,
S.
,
Dattin
,
A.
,
Ivanov
,
S. G.
, and
Aniskevich
,
A.
,
2016
, “
Novel Method for Functionalising and Patterning Textile Composites: Liquid Resin Print
,”
Compos. Part A Appl. Sci. Manuf.
,
84
, pp.
175
185
.
8.
Stanier
,
D.
,
Radhakrishnan
,
A.
,
Gent
,
I.
,
Roy
,
S. S.
,
Hamerton
,
I.
,
Potluri
,
P.
,
Scarpa
,
F.
,
Shaffer
,
M.
, and
Ivanov
,
D. S.
,
2019
, “
Matrix-Graded and Fibre-Steered Composites to Tackle Stress Concentrations
,”
Compos. Struct.
,
207
, pp.
72
80
.
9.
Anthony
,
D. B.
,
Turk
,
M. A.
,
Nguyen
,
S. N.
,
Kucernak
,
A. R.
,
Shaffer
,
M. S.
,
Ivanov
,
D. S.
, and
S
,
G. E.
,
2020
, “
Formable Structures for Carbon Aerogel Infused Carbon Fibre Samples
,”
Proceedings of ECCM19
,
Nantes, France
,
June 22–26
.
10.
Fink
,
B. K.
,
McKnight
,
S. H.
, and
Gillespie
,
J. W.
,
1998
, “
Co-Injection Resin Transfer Molding for Optimization of Integral Armor
,”
Proceedings of Army Science Conference
,
Norfolk, VA
,
June 12–15
, pp.
15
17
.
11.
Krollmann
,
J.
,
Alvarado
,
C. S.
,
Carqueville
,
P.
,
Snajdr
,
R.
,
Zaremba
,
S.
, and
Drechsler
,
K.
,
2016
, “
Hybrid-Matrix Processing: How to Co-Inject Multiple Resin Systems Into One Composite Part ?
,”
ECCM17 -17th European Conference on Composite Materials
,
Munich
, pp.
26
30
.
12.
Mehdikhani
,
M.
,
Gorbatikh
,
L.
,
Verpoest
,
I.
, and
Lomov
,
S. V.
,
2019
, “
Voids in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics, and Effects on Mechanical Performance
,”
J. Compos. Mater.
,
53
(
12
), pp.
1579
1669
.
13.
Leclerc
,
J. S.
, and
Ruiz
,
E.
,
2008
, “
Porosity Reduction Using Optimised Flow Velocity in Resin Transfer Molding
,”
Compos. Part A Appl. Sci. Manuf.
,
39
(
12
), pp.
1859
1868
.
14.
Wood
,
J. R.
, and
Bader
,
M. G.
,
1994
, “
Void Control for Polymer-Matrix Composites (1): Theoretical and Experimental Methods for Determining the Growth and Collapse of Gas Bubbles
,”
Compos. Manuf.
,
5
(
3
), pp.
139
147
.
15.
Bernet
,
N.
,
Michaud
,
V.
,
Bourban
,
P. E.
, and
Manson
,
J. A. E.
,
1999
, “
Impregnation Model for the Consolidation of Thermoplastic Composites Made From Commingled Yarns
,”
J. Compos. Mater.
,
33
(
8
), pp.
751
772
.
16.
Zhang
,
D.
,
Heider
,
D.
, and
Gillespie
,
J. W.
,
2017
, “
Void Reduction of High-Performance Thermoplastic Composites via Oven Vacuum Bag Processing
,”
J. Compos. Mater.
,
51
(
30
), pp.
4219
4230
.
17.
White
,
S. R.
, and
Kim
,
Y. K.
,
1996
, “
Staged Curing of Composite Materials
,”
Compos. Part A Appl. Sci. Manuf.
,
27
(
3
), pp.
219
227
.
18.
Lundström
,
T. S.
,
1997
, “
Measurement of Void Collapse During Resin Transfer Moulding
,”
Compos. Part A Appl. Sci. Manuf.
,
28
(
3
), pp.
201
214
.
19.
Pham
,
X. T.
, and
Trochu
,
F.
,
1999
, “
Simulation of Compression Resin Transfer Molding to Manufacture Thin Composite Shells
,”
Polym. Compos.
,
20
(
3
), pp.
436
459
.
20.
Gutowski
,
T. G.
,
Cai
,
Z.
,
Bauer
,
S.
,
Boucher
,
D.
,
Kingery
,
J.
, and
Wineman
,
S.
,
1987
, “
Consolidation Experiments for Laminate Composites
,”
J. Compos. Mater.
,
21
(
7
), pp.
650
669
.
21.
Koptelov
,
A.
,
Belnoue
,
J. P. H.
,
Georgilas
,
I.
,
Hallett
,
S. R.
, and
Ivanov
,
D. S.
,
2022
, “
Adaptive Real-Time Characterisation of Composite Precursors in Manufacturing
,”
Front. Mater.
,
9
.
22.
Koptelov
,
A.
,
Belnoue
,
J. P. H.
,
Georgilas
,
I.
,
Hallett
,
S. R.
, and
Ivanov
,
D. S.
,
2022
, “
Revising Testing of Composite Precursors—A New Framework for Data Capture in Complex Multi-Material Systems
,”
Compos. Part A Appl. Sci. Manuf.
,
152
, p.
106697
.
23.
Gutowski
,
T. G.
,
Morigaki
,
T.
, and
Cai
,
Z.
,
1987
, “
The Consolidation of Laminate Composites
,”
J. Compos. Mater.
,
21
(
2
), pp.
172
188
.
24.
Hubert
,
P.
, and
Kratz
,
J.
,
2021
, “
Tool Interface Pressure During the Forming of Model Composite Corners
,”
Compos. Part A Appl. Sci. Manuf.
,
151
, p.
106639
.
25.
Hubert
,
P.
, and
Poursartip
,
A.
,
2001
, “
Aspects of the Compaction of Composite Angle Laminates: An Experimental Investigation
,”
J. Compos. Mater.
,
35
(
1
), pp.
2
26
.
26.
Hubert
,
P.
, and
Poursartip
,
A.
,
1998
, “
A Review of Flow and Compaction Modelling Relevant to Thermoset Matrix Laminate Processing
,”
J. Reinf. Plast. Compos.
,
17
(
4
), pp.
286
318
.
27.
Roller
,
M. B.
,
1975
, “
Characterisation of the Time-Temperature-Viscosity Behavior of Curing B-Staged Epoxy Resin
,”
Polym. Eng. Sci.
,
15
(
6
), pp.
406
414
.
28.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
,
1955
, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
(
14
), pp.
3701
3707
.
29.
Mijovic
,
J.
, and
Lee
,
C. H.
,
1989
, “
Modeling of Chemorheology of Thermoset Cure by Modified WLF Equation
,”
J. Appl. Polym. Sci.
,
37
(
4
), pp.
889
900
.
30.
Karkanas
,
P. I.
, and
Partridge
,
I. K.
,
2000
, “
Cure Modeling and Monitoring of Epoxy/Amine Resin Systems. II. Network Formation and Chemoviscosity Modeling
,”
J. Appl. Polym. Sci.
,
77
(
10
), pp.
2178
2188
.
31.
Castro
,
J. M.
, and
Macosko
,
C. W.
,
1982
, “
Studies of Mold Filling and Curing in the Reaction Injection Molding Process
,”
AIChE J.
,
28
(
2
), pp.
250
260
.
32.
Kiuna
,
N.
,
Lawrence
,
C. J.
,
Fontana
,
Q. P. V.
,
Lee
,
P. D.
,
Selerland
,
T.
, and
Spelt
,
P. D. M.
,
2002
, “
A Model for Resin Viscosity During Cure in the Resin Transfer Moulding Process
,”
Compos. Part A Appl. Sci. Manuf.
,
33
(
11
), pp.
1497
1503
.
33.
Lucio
,
B.
, and
de la Fuente
,
J. L.
,
2014
, “
Rheological Cure Characterization of an Advanced Functional Polyurethane
,”
Thermochim. Acta
,
596
, pp.
6
13
.
34.
Keller
,
A.
,
Masania
,
K.
,
Taylor
,
A. C.
, and
Dransfeld
,
C.
,
2016
, “
Fast-Curing Epoxy Polymers With Silica Nanoparticles: Properties and Rheo-Kinetic Modelling
,”
J. Mater. Sci.
,
51
(
1
), pp.
236
251
.
35.
Geissberger
,
R.
,
Maldonado
,
J.
,
Bahamonde
,
N.
,
Keller
,
A.
,
Dransfeld
,
C.
, and
Masania
,
K.
,
2017
, “
Rheological Modelling of Thermoset Composite Processing
,”
Compos. B. Eng.
,
124
, pp.
182
189
.
36.
Herceg
,
T. M.
,
Yoon
,
S.-H.
,
Abidin
,
M. S. Z.
,
Greenhalgh
,
E. S.
,
Bismarck
,
A.
, and
Shaffer
,
M. S. P. P.
,
2016
, “
Thermosetting Nanocomposites With High Carbon Nanotube Loadings Processed by a Scalable Powder Based Method
,”
Compos. Sci. Technol.
,
127
, pp.
62
70
.
37.
Ozeren Ozgul
,
E.
, and
Ozkul
,
M. H.
,
2018
, “
Effects of Epoxy, Hardener, and Diluent Types on the Workability of Epoxy Mixtures
,”
Constr. Build Mater.
,
158
, pp.
369
377
.
38.
Pascual
,
C.
,
De Castro
,
J.
,
Schueler
,
A.
,
Vassilopoulos
,
A. P.
, and
Keller
,
T.
,
2014
, “
Total Light Transmittance of Glass Fiber-Reinforced Polymer Laminates for Multifunctional Load-Bearing Structures
,”
J. Compos. Mater.
,
48
(
29
), pp.
3591
3604
.
39.
Zobeiry
,
N.
,
Lee
,
A.
, and
Mobuchon
,
C.
,
2020
, “
Fabrication of Transparent Advanced Composites
,”
Compos. Sci. Technol.
,
197
, p.
108281
.
40.
Dunkers
,
J. P.
,
Parnas
,
R. S.
,
Zimba
,
C. G.
,
Peterson
,
R. C.
,
Flynn
,
K. M.
,
Fujimoto
,
J. G.
, and
Bouma
,
B. E.
,
1999
, “
Optical Coherence Tomography of Glass Reinforced Polymer Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
30
(
2
), pp.
139
145
.
41.
Rauf
,
A.
,
Hand
,
R. J.
, and
Hayes
,
S. A.
,
2014
, “
Modifying the Refractive Index of Epoxy Resins Using Reactive Diluents to Enable Optical Self-Sensing in E-Glass Fibre Composites
,”
Appl. Mech. Mater.
,
625
, pp.
90
93
.
42.
Lin
,
H.
,
Day
,
D. E.
,
Weaver
,
K. D.
, and
Stoffer
,
J. O.
,
1994
, “
Temperature and Wavelength Dependent Transmission of Optically Transparent Glass Fibre Poly (Methyl Methacrylate) Composites
,”
J. Mater. Sci.
,
29
(
19
), pp.
5193
5198
.
43.
Gutowski
,
T. G.
,
Morigaki
,
T.
, and
Cai
,
Z.
,
1987
, “
The Consolidation of Laminate Composites
,”
J. Compos. Mater.
,
21
(
2
), pp.
172
188
.
44.
Kelly
,
P. A.
,
Umer
,
R.
, and
Bickerton
,
S.
,
2006
, “
Viscoelastic Response of Dry and Wet Fibrous Materials During Infusion Processes
,”
Compos. Part A Appl. Sci. Manuf.
,
37
(
6 SPEC. ISS.
), pp.
868
873
.
45.
Nedanov
,
P. B.
, and
Advani
,
S. G.
,
2002
, “
Numerical Computation of the Fiber Preform Permeability Tensor by the Homogenization Method
,”
Polym. Compos.
,
23
(
5
), pp.
758
770
.
46.
Endruweit
,
A.
,
Zeng
,
X.
,
Matveev
,
M.
, and
Long
,
A. C.
,
2018
, “
Effect of Yarn Cross-Sectional Shape on Resin Flow Through Inter-Yarn Gaps in Textile Reinforcements
,”
Compos. Part A Appl. Sci. Manuf.
,
104
, pp.
139
150
.
47.
Gojny
,
F. H.
,
Wichmann
,
M. H. G. G.
,
Fiedler
,
B.
,
Bauhofer
,
W.
, and
Schulte
,
K.
,
2005
, “
Influence of Nano-Modification on the Mechanical and Electrical Properties of Conventional Fibre-Reinforced Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
36
(
11
), pp.
1525
1535
.
48.
Reia da Costa
,
E. F.
,
Skordos
,
A. A.
,
Partridge
,
I. K.
, and
Rezai
,
A.
,
2012
, “
RTM Processing and Electrical Performance of Carbon Nanotube Modified Epoxy/Fibre Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
43
(
4
), pp.
593
602
.
49.
Domingues
,
D.
,
Logakis
,
E.
, and
Skordos
,
A. A.
,
2012
, “
The Use of an Electric Field in the Preparation of Glass Fibre/Epoxy Composites Containing Carbon Nanotubes
,”
Carbon N. Y.
,
50
(
7
), pp.
2493
2503
.
50.
Gao
,
L.
,
Chou
,
T.-W.
,
Thostenson
,
E. T.
,
Godara
,
A.
,
Zhang
,
Z.
, and
Mezzo
,
L.
,
2010
, “
Highly Conductive Polymer Composites Based on Controlled Agglomeration of Carbon Nanotubes
,”
Carbon N. Y.
,
48
(
9
), pp.
2649
2651
.
51.
Gnidakouong
,
J. R. N.
,
Roh
,
H. D.
,
Kim
,
J.-H.
, and
Park
,
Y.-B.
,
2016
, “
In Situ Assessment of Carbon Nanotube Flow and Filtration Monitoring Through Glass Fabric Using Electrical Resistance Measurement
,”
Compos. Part A Appl. Sci. Manuf.
,
90
, pp.
137
146
You do not currently have access to this content.