Abstract

Lattice structure metamaterials offer a variety of unique and tailorable properties, yet industrial adoption is slowed by manufacturability and inspection-related difficulties. Despite recent advances in laser powder bed fusion additive manufacturing, the sub-millimeter features of lattices are at the edge of process capabilities and suffer from low geometric quality. To better understand their complex process-structure-property (PSP) relationships, octahedron structures were manufactured across a power spectrum, inspected, and mechanically tested. X-ray computed tomography was used to characterize lattice geometry, and demonstrated that lattice strut geometry measures, increased significantly as a function of laser power. Furthermore, lattices are shown to exhibit a direct correlation between laser power and mechanical performance metrics. Performance variations up to 60% are shown as a function of process parameters despite nominally identical geometry. Significant geometry variations are found to be the cause of performance variation, while material properties as measured by microindentation hardness are constant across the studied parameter range. PSP relationships are modeled, and the limitations of these models are explored. It was found that resulting models can predict mechanical performance based on geometric characteristics with R2 values of up to 0.86. Finally, mechanistic causes of observed performance changes are discussed.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing
, 2nd ed.,
Springer
,
New York
.
2.
Altıparmak
,
S. C.
, and
Xiao
,
B.
,
2021
, “
A Market Assessment of Additive Manufacturing Potential for the Aerospace Industry
,”
J. Manuf. Processes
,
68
(
1
), pp.
728
738
.
3.
Tofail
,
S. A. M.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
4.
Helou
,
M.
, and
Kara
,
S.
,
2018
, “
Design, Analysis and Manufacturing of Lattice Structures: An Overview
,”
Int. J. Comput. Integr. Manuf.
,
31
(
3
), pp.
243
261
.
5.
White
,
B. C.
,
Garland
,
A.
, and
Boyce
,
B. L.
,
2022
, “
Topological Homogenization of Metamaterial Variability
,”
Mater. Today
,
53
(
1
), pp.
16
26
.
6.
Kang
,
D.
,
Park
,
S.
,
Son
,
Y.
,
Yeon
,
S.
,
Kim
,
S. H.
, and
Kim
,
I.
,
2019
, “
Multi-lattice Inner Structures for High-Strength and Light-Weight in Metal Selective Laser Melting Process
,”
Mater. Des.
,
175
(
1
), p.
107786
.
7.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties.
,
Cambridge University Press
,
Cambridge, MA
.
8.
Winter
,
R. E.
,
Cotton
,
M.
,
Harris
,
E. J.
,
Maw
,
J. R.
,
Chapman
,
D. J.
,
Eakins
,
D. E.
, and
McShane
,
G.
,
2014
, “
Plate-Impact Loading of Cellular Structures Formed by Selective Laser Melting
,”
Modell. Simul. Mater. Sci. Eng.
,
22
(
2
), p.
025021
.
9.
White
,
B. C.
,
Garland
,
A.
,
Alberdi
,
R.
, and
Boyce
,
B. L.
,
2021
, “
Interpenetrating Lattices With Enhanced Mechanical Functionality
,”
Addit. Manuf.
,
38
(
1
), p.
101741
.
10.
Uribe-Lam
,
E.
,
Treviño-Quintanilla
,
C. D.
,
Cuan-Urquizo
,
E.
, and
Olvera-Silva
,
O.
,
2021
, “
Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review
,”
Mater. Manuf. Process.
,
36
(
3
), pp.
257
280
.
11.
Elambasseril
,
J.
,
Rogers
,
J.
,
Wallbrink
,
C.
,
Munk
,
D.
,
Leary
,
M.
, and
Qian
,
M.
,
2022
, “
Laser Powder Bed Fusion Additive Manufacturing (LPBF-AM): The Influence of Design Features and LPBF Variables on Surface Topography and Effect on Fatigue Properties
,”
Crit. Rev. Solid State Mater. Sci.
,
48
(
1
), pp.
1
37
.
12.
Praniewicz
,
M.
,
Ameta
,
G.
,
Fox
,
J.
, and
Saldana
,
C.
,
2020
, “
Data Registration for Multi-method Qualification of Additive Manufactured Components
,”
Addit. Manuf.
,
35
(
1
), p.
101292
.
13.
Leach
,
R. K.
,
Bourell
,
D.
,
Carmignato
,
S.
,
Donmez
,
A.
,
Senin
,
N.
, and
Dewulf
,
W.
,
2019
, “
Geometrical Metrology for Metal Additive Manufacturing
,”
CIRP Ann.
,
68
(
2
), pp.
677
700
.
14.
McGregor
,
D. J.
,
Tawfick
,
S.
, and
King
,
W. P.
,
2019
, “
Automated Metrology and Geometric Analysis of Additively Manufactured Lattice Structures
,”
Addit. Manuf.
,
28
(
1
), pp.
535
545
.
15.
Chen
,
L.-Y.
,
Liang
,
S.-X.
,
Liu
,
Y.
, and
Zhang
,
L.-C.
,
2021
, “
Additive Manufacturing of Metallic Lattice Structures: Unconstrained Design, Accurate Fabrication, Fascinated Performances, and Challenges
,”
Mater. Sci. Eng. Rep.
,
146
(
1
), p.
100648
.
16.
Sperling
,
P.
,
du Plessis
,
A.
, and
Schwaderer
,
G.
,
2021
, “
Challenges and Approaches for Metrology of Additive Manufactured Lattice Structures by Industrial X-Ray Computed Tomography
,”
Adv. Mater. Res.
,
1161
(
1
), pp.
131
136
. www.scientific.net/AMR.1161.131
17.
Carlton
,
H. D.
,
Volkoff-Shoemaker
,
N. A.
,
Messner
,
M. C.
,
Barton
,
N. R.
, and
Kumar
,
M.
,
2022
, “
Incorporating Defects Into Model Predictions of Metal Lattice-Structured Materials
,”
Mater. Sci. Eng. A
,
832
(
1
), p.
142427
.
18.
Boyce
,
B.
,
Garland
,
A.
,
White
,
B.
,
Jared
,
B.
,
Conway
,
K.
,
Adstedt
,
K.
,
Dingreville
,
R.
, et al
,
2021
, “
Multimode Metastructures: Novel Hybrid 3D Lattice Topologies
,” https://www.osti.gov/biblio/1819411
19.
Jam
,
A.
,
du Plessis
,
A.
,
Lora
,
C.
,
Raghavendra
,
S.
,
Pellizzari
,
M.
, and
Benedetti
,
M.
,
2022
, “
Manufacturability of Lattice Structures Fabricated by Laser Powder Bed Fusion: A Novel Biomedical Application of the Beta Ti-21S Alloy
,”
Addit. Manuf.
,
50
(
1
), p.
102556
.
20.
Branch
,
B. A.
,
Specht
,
P. E.
,
Jensen
,
S.
, and
Jared
,
B.
,
2022
, “
Detailed Meso-Scale Simulations of the Transient Deformation in Additively Manufactured 316L Stainless Steel Lattices Characterized by Phase Contrast Imaging
,”
Int. J. Impact Eng.
,
161
(
1
), p.
104112
.
21.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
5
(
1
), pp.
16
40
.
22.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
, and
Hebenstreit
,
K. M.
,
2014
, “
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
,”
J. Res. Nat. Inst. Stand. Technol.
,
119
(
1
), p.
494
.
23.
Scipioni Bertoli
,
U.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J.-P. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
Mater. Des.
,
113
(
1
), pp.
331
340
.
24.
Jiang
,
J.
,
Chen
,
J.
,
Ren
,
Z.
,
Mao
,
Z.
,
Ma
,
X.
, and
Zhang
,
D. Z.
,
2020
, “
The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting
,”
Metals
,
10
(
9
), p.
1228
.
25.
Patel
,
S.
, and
Vlasea
,
M.
,
2020
, “
Melting Modes in Laser Powder Bed Fusion
,”
Materialia
,
9
(
1
), p.
100591
.
26.
Roach
,
A. M.
,
White
,
B. C.
,
Garland
,
A.
,
Jared
,
B. H.
,
Carroll
,
J. D.
, and
Boyce
,
B. L.
,
2020
, “
Size-Dependent Stochastic Tensile Properties in Additively Manufactured 316 l Stainless Steel
,”
Addit. Manuf.
,
32
(
1
), p.
101090
.
27.
Jost
,
E. W.
,
Moore
,
D. G.
, and
Saldana
,
C.
,
2021
, “
Evolution of Global and Local Deformation in Additively Manufactured Octet Truss Lattice Structures
,”
Addit. Manuf. Lett.
,
1
(
1
), p.
100010
.
28.
Qiu
,
C.
,
Yue
,
S.
,
Adkins
,
N. J. E.
,
Ward
,
M.
,
Hassanin
,
H.
,
Lee
,
P. D.
,
Withers
,
P. J.
, and
Attallah
,
M. M.
,
2015
, “
Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
628
(
1
), pp.
188
197
.
29.
Lane
,
B.
,
Heigel
,
J.
,
Ricker
,
R.
,
Zhirnov
,
I.
,
Khromschenko
,
V.
,
Weaver
,
J.
,
Phan
,
T.
,
Stoudt
,
M.
,
Mekhontsev
,
S.
, and
Levine
,
L.
,
2020
, “
Measurements of Melt Pool Geometry and Cooling Rates of Individual Laser Traces on IN625 Bare Plates
,”
Integr. Mater. Manuf. Innov.
,
9
(
1
), pp.
16
30
.
30.
Dallago
,
M.
,
2019
, “
On the Effect of Geometrical Imperfections and Defects on the Fatigue Strength of Cellular Lattice Structures Additively Manufactured Via Selective Laser Melting
,”
Int. J. Fatigue
,
124
(
1
), pp.
348
360
.
31.
Lozanovski
,
B.
,
Downing
,
D.
,
Tran
,
P.
,
Shidid
,
D.
,
Qian
,
M.
,
Choong
,
P.
,
Brandt
,
M.
, and
Leary
,
M.
,
2020
, “
A Monte Carlo Simulation-Based Approach to Realistic Modelling of Additively Manufactured Lattice Structures
,”
Addit. Manuf.
,
32
(
1
), p.
101092
.
32.
Lozanovski
,
B.
,
Leary
,
M.
,
Tran
,
P.
,
Shidid
,
D.
,
Qian
,
M.
,
Choong
,
P.
, and
Brandt
,
M.
,
2019
, “
Computational Modelling of Strut Defects in SLM Manufactured Lattice Structures
,”
Mater. Des.
,
171
(
1
), p.
107671
.
33.
Liu
,
L.
,
Kamm
,
P.
,
García-Moreno
,
F.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-Dimensional Metallic Lattices: The Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids
,
107
(
1
), pp.
160
184
.
34.
Cao
,
X.
,
Jiang
,
Y.
,
Zhao
,
T.
,
Wang
,
P.
,
Wang
,
Y.
,
Chen
,
Z.
,
Li
,
Y.
,
Xiao
,
D.
, and
Fang
,
D.
,
2020
, “
Compression Experiment and Numerical Evaluation on Mechanical Responses of the Lattice Structures With Stochastic Geometric Defects Originated From Additive-Manufacturing
,”
Composites Part B
,
194
(
1
), p.
108030
.
35.
Yu
,
G.
,
Li
,
X.
,
Dai
,
L.
,
Xiao
,
L.
, and
Song
,
W.
,
2021
, “
Compressive Properties of Imperfect Ti-6Al-4V Lattice Structure Fabricated by Electron Beam Powder Bed Fusion Under Static and Dynamic Loadings
,”
Addit. Manuf.
,
49
(
1
), p.
102497
.
36.
Jost
,
E. W.
,
Pegues
,
J.
,
Moore
,
D. G.
, and
Saldana
,
C.
,
2022
, “
Modeling Process-Structure Relationships for Additively Manufactured Microscale Features
,”
ASNT 30th Research Symposium Conference Proceedings
,
St. Louis, MO
,
June 20–23
, pp.
1
4
.
37.
Dressler
,
A. D.
,
Jost
,
E. W.
,
Miers
,
J. C.
,
Moore
,
D. G.
,
Seepersad
,
C. C.
, and
Boyce
,
B. L.
,
2019
, “
Heterogeneities Dominate Mechanical Performance of Additively Manufactured Metal Lattice Struts
,”
Addit. Manuf.
,
28
(
1
), pp.
692
703
.
38.
E28 Committee
,
2013
,
Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
39.
E04 Committee
,
2022
,
Test Method for Microindentation Hardness of Materials
,
ASTM International
,
West Conshohocken, PA
.
40.
E28 Committee
,
2018
,
Test Methods of Compression Testing of Metallic Materials at Room Temperature
,
ASTM International
,
West Conshohocken, PA
.
41.
ISO/TC 164/SC 2
,
2022
,
Mechanical Testing of Metals—Ductility Testing—Compression Test for Porous and Cellular Metals
,
ISO
,
Geneva, Switzerland
.
42.
Jost
,
E. W.
,
Miers
,
J. C.
,
Robbins
,
A.
,
Moore
,
D. G.
, and
Saldana
,
C.
,
2021
, “
Effects of Spatial Energy Distribution-Induced Porosity on Mechanical Properties of Laser Powder Bed Fusion 316L Stainless Steel
,”
Addit. Manuf.
,
39
(
1
), p.
101875
.
43.
Eliasu
,
A.
,
Czekanski
,
A.
, and
Boakye-Yiadom
,
S.
,
2021
, “
Effect of Laser Powder Bed Fusion Parameters on the Microstructural Evolution and Hardness of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
113
(
9–10
), pp.
2651
2669
.
44.
Cherry
,
J. A.
,
Davies
,
H. M.
,
Mehmood
,
S.
,
Lavery
,
N. P.
,
Brown
,
S. G. R.
, and
Sienz
,
J.
,
2015
, “
Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
869
879
.
45.
Pragana
,
J. P.
,
Pombinha
,
P.
,
Duarte
,
V. R.
,
Rodrigues
,
T. A.
,
Oliveira
,
J. P.
,
Bragança
,
I. M.
,
Santos
,
T. G.
,
Miranda
,
R. M.
,
Coutinho
,
L.
, and
Silva
,
C. M.
,
2020
, “
Influence of Processing Parameters on the Density of 316L Stainless Steel Parts Manufactured Through Laser Powder Bed Fusion
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
234
(
9
), pp.
1246
1257
.
46.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Clarendon Press; Oxford University Press
,
Oxford, NY
.
47.
Sombatmai
,
A.
,
Uthaisangsuk
,
V.
,
Wongwises
,
S.
, and
Promoppatum
,
P.
,
2021
, “
Multiscale Investigation of the Influence of Geometrical Imperfections, Porosity, and Size-Dependent Features on Mechanical Behavior of Additively Manufactured Ti-6Al-4V Lattice Struts
,”
Mater. Des.
,
209
(
1
), p.
109985
.
48.
Keshavarzkermani
,
A.
,
Marzbanrad
,
E.
,
Esmaeilizadeh
,
R.
,
Mahmoodkhani
,
Y.
,
Ali
,
U.
,
Enrique
,
P. D.
,
Zhou
,
N. Y.
,
Bonakdar
,
A.
, and
Toyserkani
,
E.
,
2019
, “
An Investigation Into the Effect of Process Parameters on Melt Pool Geometry, Cell Spacing, and Grain Refinement During Laser Powder Bed Fusion
,”
Opt. Laser Technol.
,
116
(
1
), pp.
83
91
.
49.
Arshad
,
A. B.
,
Nazir
,
A.
, and
Jeng
,
J.-Y.
,
2020
, “
The Effect of Fillets and Crossbars on Mechanical Properties of Lattice Structures Fabricated Using Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
111
(
3–4
), pp.
931
943
.
50.
Nazir
,
A.
,
Arshad
,
A.-B.
,
Hsu
,
C.-P.
, and
Jeng
,
J.-Y.
,
2021
, “
Effect of Fillets on Mechanical Properties of Lattice Structures Fabricated Using Multi-jet Fusion Technology
,”
Materials
,
14
(
9
), p.
2194
.
51.
Qi
,
D.
,
Yu
,
H.
,
Liu
,
M.
,
Huang
,
H.
,
Xu
,
S.
,
Xia
,
Y.
,
Qian
,
G.
, and
Wu
,
W.
,
2019
, “
Mechanical Behaviors of SLM Additive Manufactured Octet-Truss and Truncated-Octahedron Lattice Structures With Uniform and Taper Beams
,”
Int. J. Mech. Sci.
,
163
(
1
), p.
105091
.
52.
Portela
,
C. M.
,
Greer
,
J. R.
, and
Kochmann
,
D. M.
,
2018
, “
Impact of Node Geometry on the Effective Stiffness of Non-Slender Three-Dimensional Truss Lattice Architectures
,”
Extreme Mech. Lett.
,
22
, pp.
138
148
.
You do not currently have access to this content.