Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The investigation of diamond micro-chiseling (DMC) has been studied as a machining process for generating specific surface microstructures. The current research mainly focuses on the processing performance of DMC in different applications without exploring the DMC surface generation process from the principle. This article studies the DMC surface generation process under different processing parameters through both theoretical and experimental parts. In the theoretical part, an accurate surface generation model is created that considers the effects of geometrical relationships, material removal mechanisms, minimum uncut chip thickness, and dynamics. The geometric model of the diamond chiseling tool is described, the trajectory between the tool and workpiece is built, and the minimum uncut chip is considered and established. Regarding dynamic factors, a spring-mass damping vibration system of DMC is established, and a finite element model is built to analyze the cutting force. In the experimental part, DMC surface generation experiments are conducted to explore the material removal mechanism and compare surface topography. Results show that our simulation model can estimate DMC topography with an error of less than 0.5 µm. Simultaneously, the optimal DMC strategy is obtained through experiments.

References

1.
Brinksmeier
,
E.
,
Gläbe
,
R.
, and
Schönemann
,
L.
,
2012
, “
Diamond Micro Chiseling of Large-Scale Retroreflective Arrays
,”
Precis. Eng.
,
36
(
4
), pp.
650
657
.
2.
Luoma
,
J.
,
Schumann
,
J.
, and
Traube
,
E. C.
,
1996
, “
Effects of Retroreflector Positioning on Nighttime Recognition of Pedestrians
,”
Accid. Anal. Prevent.
,
28
(
3
), pp.
377
383
.
3.
Takeuchi
,
Y.
,
Murota
,
M.
,
Kawai
,
T.
, and
Sawada
,
K.
,
2003
, “
Creation of Flat-End V-Shaped Microgrooves by Non-Rotational Cutting Tools
,”
CIRP Ann.
,
52
(
1
), pp.
41
44
.
4.
Ren
,
D.
,
Lawton
,
K. M.
, and
Miller
,
J. A.
,
2007
, “
Application of Cat's-Eye Retroreflector in Micro-Displacement Measurement
,”
Precis. Eng.
,
31
(
1
), pp.
68
71
.
5.
Estler
,
W. T.
,
Edmundson
,
K. L.
,
Peggs
,
G. N.
, and
Parker
,
D. H.
,
2002
, “
Large-Scale Metrology—An Update
,”
CIRP Ann.
,
51
(
2
), pp.
587
609
.
6.
Flucke
,
C.
,
Gläbe
,
R.
, and
Brinksmeier
,
E.
,
2008
, “
Diamond Micro Chiselling of Molding Inserts for Optical Micro Structures
,”
Proceedings of the 23rd Annual Meeting and 12th ICPE
,
Portland, OR
,
Oct. 19–24
, pp.
92
95
.
7.
Schönemann
,
L.
, and
Brinksmeier
,
E.
,
2018
, “
Micro Chiseling of Retroreflective Arrays
,”
Micro Nano Fabr. Technol.
,
1
(
1
), pp.
1
29
. doi.org/10.1007/978-981-10-6588-0_1-2
8.
Flucke
,
C.
,
Gläbe
,
R.
, and
Brinksmeier
,
E.
,
2006
, “
Diamond Micro Chiseling of Micro Structured Moulds
,”
6th Euspen International Conference
,
Baden, Germany
,
May 28–June 1
, pp.
437
440
.
9.
Cheung
,
C.
, and
Lee
,
W.
,
2001
, “
Characterisation of Nanosurface Generation in Single-Point Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
41
(
6
), pp.
851
875
.
10.
Sato
,
Y.
, and
Yan
,
J.
,
2022
, “
Tool Path Generation and Optimization for Freeform Surface Diamond Turning Based on an Independently Controlled Fast Tool Servo
,”
Int. J. Extreme Manuf.
,
4
(
2
), p.
025102
.
11.
Zhao
,
C.
, and
Cheung
,
C. F.
,
2018
, “
Theoretical and Experimental Investigation of the Effect of the Machining Process Chain on Surface Generation in Ultra-Precision Fly Cutting
,”
Int. J. Adv. Manuf. Technol.
,
99
(
9–12
), pp.
2819
2831
.
12.
Harper
,
E. M.
,
Checa
,
A. G.
, and
Rodríguez-Navarro
,
A. B.
,
2009
, “
Organization and Mode of Secretion of the Granular Prismatic Microstructure of Entodesma Navicula (Bivalvia: Mollusca)
,”
Acta Zool.
,
90
(
2
), pp.
132
141
.
13.
Wu
,
B.
, and
Zong
,
W.
,
2022
, “
A Modified Diamond Micro Chiseling Method for Machining Large Scale Retroreflective Microstructure on Nickel Phosphorus Alloy
,”
J. Mater. Process. Technol.
,
307
, p.
117676
.
14.
Sun
,
Z.
,
To
,
S.
,
Zhang
,
G.
, and
Zhang
,
S.
,
2019
, “
Flexible Fabrication of Micro-Optics Arrays With High-Aspect-Ratio by an Offset-Tool-Servo Diamond Machining System
,”
Opt. Express
,
27
(
7
), p.
9631
.
15.
Lucca
,
D. A.
,
Klopfstein
,
M. J.
, and
Riemer
,
O.
,
2020
, “
Ultra-Precision Machining: Cutting With Diamond Tools
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110817
.
16.
He
,
C. L.
,
Zong
,
W. J.
,
Xue
,
C. X.
, and
Sun
,
T.
,
2018
, “
An Accurate 3D Surface Topography Model for Single-Point Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
134
, pp.
42
68
.
17.
Huang
,
W.
, and
Yan
,
J.
,
2023
, “
Mechanisms of Tool-Workpiece Interaction in Ultraprecision Diamond Turning of Single-Crystal SiC for Curved Microstructures
,”
Int. J. Mach. Tools Manuf.
,
191
, p.
104063
.
18.
Brinksmeier
,
E.
, and
Schönemann
,
L.
,
2014
, “
Generation of Discontinuous Microstructures by Diamond Micro Chiseling
,”
CIRP Ann.
,
63
(
1
), pp.
49
52
.
19.
Zhang
,
X.
,
Liu
,
K.
,
Sunappan
,
V.
, and
Shan
,
X.
,
2015
, “
Diamond Micro Engraving of Gravure Roller Mould for Roll-to-Roll Printing of Fine Line Electronics
,”
J. Mater. Process. Technol.
,
225
, pp.
337
346
.
20.
Brinksmeier
,
E.
,
Gläbe
,
R.
, and
Schönemann
,
L.
,
2012
, “
Review on Diamond-Machining Processes for the Generation of Functional Surface Structures
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
1
), pp.
1
7
.
21.
Dörgeloh
,
T.
,
Schönemann
,
L.
,
Riemer
,
O.
, and
Brinksmeier
,
E.
,
2017
, “
Diamond Micro Chiseling of Retroreflective Arrays on Curved Surfaces
,”
17th Euspen International Conference & Exhibition
,
Hannover, Germany
,
May 29
.
22.
Gentle
,
J. E.
,
2017
, “Matrix Transformations and Factorizations,”
Matrix Algebra
,
Springer
,
New York
, pp.
227
263
.
23.
Zhang
,
C.
,
Rentsch
,
R.
, and
Brinksmeier
,
E.
,
2005
, “
Advances in Micro Ultrasonic Assisted Lapping of Microstructures in Hard–Brittle Materials: A Brief Review and Outlook
,”
Int. J. Mach. Tools Manuf.
,
45
(
7–8
), pp.
881
890
.
24.
Fang
,
F. Z.
,
Liu
,
X. D.
, and
Lee
,
L. C.
,
2003
, “
Micro-Machining of Optical Glasses—A Review of Diamond-Cutting Glasses
,”
Sadhana
,
28
(
5
), pp.
945
955
.
25.
Liu
,
K.
, and
Melkote
,
S. N.
,
2006
, “
Effect of Plastic Side Flow on Surface Roughness in Micro-Turning Process
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1778
1785
.
26.
Kong
,
M. C.
,
Lee
,
W. B.
,
Cheung
,
C. F.
, and
To
,
S.
,
2006
, “
A Study of Materials Swelling and Recovery in Single-Point Diamond Turning of Ductile Materials
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
210
215
.
27.
Fang
,
F. Z.
,
Wu
,
H.
, and
Liu
,
Y. C.
,
2005
, “
Modelling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1681
1686
.
28.
Fang
,
F. Z.
,
Wu
,
H.
,
Zhou
,
W.
, and
Hu
,
X. T.
,
2007
, “
A Study on Mechanism of Nano-Cutting Single Crystal Silicon
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
407
410
.
29.
He
,
C. L.
,
Zong
,
W. J.
, and
Sun
,
T.
,
2016
, “
Origins for the Size Effect of Surface Roughness in Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
22
42
.
30.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
31.
Zong
,
W. J.
,
Huang
,
Y. H.
,
Zhang
,
Y. L.
, and
Sun
,
T.
,
2014
, “
Conservation law of Surface Roughness in Single Point Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
84
, pp.
58
63
.
32.
Huang
,
P.
,
Lee
,
W. B.
, and
Chan
,
C. Y.
,
2015
, “
Investigation of the Effects of Spindle Unbalance Induced Error Motion on Machining Accuracy in Ultra-Precision Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
94
, pp.
48
56
.
33.
Wang
,
H.
,
To
,
S.
, and
Chan
,
C. Y.
,
2013
, “
Investigation on the Influence of Tool-Tip Vibration on Surface Roughness and Its Representative Measurement in Ultra-Precision Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
69
, pp.
20
29
.
34.
Sun
,
J.
,
Wu
,
Y.
,
Zhou
,
P.
,
Li
,
S.
,
Zhang
,
L.
, and
Zhang
,
K.
,
2017
, “
Simulation and Experimental Research on Si3N4 Ceramic Grinding Based on Different Diamond Grains
,”
Adv. Mech. Eng.
,
9
(
6
), p.
1687814017705596
.
You do not currently have access to this content.