Abstract

Magnetorheological finishing (MRF) is used to precisely finish various materials such as hard crystals, optical, and brittle materials. In this paper, the thermal behavior of the MRF process is studied theoretically and experimentally on thin copper substrate surface by varying rotational speed and working gap. The wall shear stress (WSS) represents the frictional force per unit area exerted by the flowing magnetorheological (MR) fluid on the workpiece surface and it is determined using three-dimensional computational fluid dynamics numerical simulations that use a dynamic viscosity model based on the variable magnetic flux density. A thermal model is proposed to predict heat generation and temperature rise on the workpiece surface with the help of energy partitioning, heat conduction equations, and WSS. It is observed that the temperature rises with increasing the rotational speed and reducing the working gap. Considering MR fluid with only abrasive particles, the theoretical temperature rise of 21.32 °C was predicted. When MR fluid is with carbonyl iron particles and abrasive particles, the theoretical temperature rise was 19.37 °C. In experiments, the maximum temperature rise of 14.8 °C was obtained. Finite element analysis is performed to estimate magnetic flux density variation on the workpiece surface and viscosity variation over the workpiece surface. Surface roughness (Sa) reduced from an initial value of 0.236 µm to 0.079 µm at 600 rpm tool rotational speed and 3 mm working gap.

References

1.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2012
, “
Environmentally Conscious Machining of Difficult-to-Machine Materials With Regard to Cutting Fluids
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
83
101
.
2.
Kamruzzaman
,
M.
, and
Dhar
,
N.
,
1970
, “
The Effect of Applying High-Pressure Coolant (HPC) Jet in Machining of 42CrMo4 Steel by Uncoated Carbide Inserts
,”
J. Mech. Eng.
,
39
(
2
), pp.
71
77
.
3.
Palanikumar
,
K.
,
2008
, “
Application of Taguchi and Response Surface Methodologies for Surface Roughness in Machining Glass Fiber Reinforced Plastics by PCD Tooling
,”
Int. J. Adv. Manuf. Technol.
,
36
(
1–2
), pp.
19
27
.
4.
Akhil
,
C. S.
,
Ananthavishnu
,
M. H.
,
Akhil
,
C. K.
,
Afeez
,
P. M.
,
Akhilesh
,
R.
, and
Rajan
,
R.
,
2016
, “
Measurement of Cutting Temperature During Machining
,”
J. Mech. Civ. Eng.
,
13
(
2
), pp.
102
116
.
5.
Kumar
,
G.
, and
Yadav
,
V.
,
2009
, “
Temperature Distribution in the Workpiece Due to Plane Magnetic Abrasive Finishing Using FEM
,”
Int. J. Adv. Manuf. Technol.
,
41
(
11–12
), pp.
1051
1058
.
6.
Yildirim
,
G.
, and
Genc
,
S.
,
2013
, “
Experimental Study on Heat Transfer of the Magnetorheological Fluids
,”
Smart Mater Struct.
,
22
(
8
), p.
085001
.
7.
Dubey
,
N. K.
,
Sidpara
,
A.
, and
Lakkaraju
,
R.
,
2024
, “
Research on the Mechanism of Particles Separation in Magnetorheological Fluid-Based Finishing Process
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
238
(
5
), pp.
759
769
.
8.
Singh
,
S.
,
Kumar
,
D.
,
Sankar
,
R.
, and
Experimental
,
M.
,
2017
, “
Theoretical, and Simulation Comparative Study of Nano Surface Roughness Generated During Abrasive Flow Finishing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061014
.
9.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
1998
, “
Magnetic Field Assisted Finishing of Ceramics-Part III: On the Thermal Aspects of Magnetic Abrasive Finishing (MAF) of Ceramic Rollers
,”
ASME J. Tribol.
,
120
(
4
), pp.
660
667
.
10.
Mishra
,
V.
,
Goel
,
H.
,
Mulik
,
R. S.
, and
Pandey
,
P. M.
,
2014
, “
Determining Work-Brush Interface Temperature in Magnetic Abrasive Finishing Process
,”
J. Manuf. Processes
,
16
(
2
), pp.
248
256
.
11.
Mulik
,
R. S.
,
Srivastava
,
V.
, and
Pandey
,
P. M.
,
2012
, “
Experimental Investigations and Modeling of Temperature in the Work-Brush Interface During Ultrasonic Assisted Magnetic Abrasive Finishing Process
,”
Mater. Manuf. Processes
,
27
(
1
), pp.
1
9
.
12.
Suratwala
,
T.
,
Feit
,
M. D.
,
Steele
,
W. A.
, and
Wong
,
L. L.
,
2014
, “
Influence of Temperature and Material Deposit on Material Removal Uniformity During Optical Pad Polishing
,”
J. Am. Ceram. Soc.
,
97
(
6
), pp.
1720
1727
.
13.
Arora
,
K.
,
Paswan
,
S. K.
, and
Singh
,
A. K.
,
2022
, “
Investigation of Surface Roughness in Novel Magnetorheological Finishing of the Internal Hemispherical-Shaped Acetabular Cup Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
111002
.
14.
Rajput
,
A. S.
,
Das
,
M.
, and
Kapil
,
S.
,
2022
, “
Investigations on a Hybrid Chemo-Magnetorheological Finishing Process for Freeform Surface Quality Enhancement
,”
J. Manuf. Processes
,
81
, pp.
522
536
.
15.
Kadhum
,
D. A. H.
,
2019
, “
Comparative Analysis on Numerical Modelling and Experiments of the Cutting Temperature in Magnetic Abrasive Finishing Process
,”
Iraqi J. Mech. Mater. Eng.
,
19
(
1
), pp.
1
13
.
16.
Dubey
,
N. K.
,
Sidpara
,
A.
, and
Lakkaraju
,
R.
,
2023
, “
Numerical and Experimental Study of Influence Function in Magnetorheological Finishing (MRF) of Freeform Surface
,”
J. Magn. Magn. Mater.
,
580
, p.
170937
.
17.
Wang
,
X.
,
Gao
,
H.
, and
Yuan
,
J.
,
2020
, “
Experimental Investigation and Analytical Modelling of the Tool Influence Function of the Ultra-Precision Numerical Control Polishing Method Based on the Water Dissolution Principle for KDP Crystals
,”
Precis. Eng.
,
65
, pp.
185
196
.
18.
Rajput
,
A.
,
Das
,
M.
, and
Kapil
,
S.
,
2024
, “
A Hybrid-Electrochemical Magnetorheological (H-ECMR) Finishing Process for Surface Enhancement of Biomedical Implants
,”
ASME J. Manuf. Sci. Eng.
,
146
(
5
), p.
051004
.
19.
Kwon
,
G. D.
,
Kim
,
Y. W.
,
Moyen
,
E.
,
Keum
,
D. H.
,
Lee
,
Y. H.
,
Baik
,
S.
, and
Pribat
,
D.
,
2014
, “
Controlled Electropolishing of Copper Foils at Elevated Temperature
,”
Appl. Surf. Sci.
,
307
, pp.
731
735
.
20.
Arora
,
K.
, and
Singh
,
A. K.
,
2021
, “
Magnetorheological Finishing of Polyamide Materials for Improving Their Functional Performance
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(1
2
), pp.
1
23
.
21.
Maan
,
S.
,
Singh
,
G.
, and
Singh
,
A. K.
,
2017
, “
Nano-Surface-Finishing of Permanent Mold Punch Using Magnetorheological Fluid-Based Finishing Processes
,”
Mater. Manuf. Processes
,
32
(
9
), pp.
1004
1010
.
22.
Kang
,
M.
,
Gu
,
Y.
,
Lin
,
J.
,
Zhou
,
X.
,
Zhang
,
S.
,
Zhao
,
H.
,
Li
,
Z.
,
Yu
,
B.
, and
Fu
,
B.
,
2023
, “
Material Removal Mechanism of Non-Resonant Vibration-Assisted Magnetorheological Finishing of Silicon Carbide Ceramics
,”
Int. J. Mech. Sci.
,
242
, p.
107986
.
23.
Qian
,
C.
,
Tian
,
Y.
,
Ahmad
,
S.
,
Ma
,
Z.
,
Li
,
L.
, and
Fan
,
Z.
,
2024
, “
Theoretical and Experimental Investigation on Magnetorheological Shear Thickening Polishing Force Using Multi-pole Coupling Magnetic Field
,”
J. Mater. Process. Technol.
,
328
, p.
118414
.
24.
Tian
,
Y.
,
Ma
,
Z.
,
Ahmad
,
S.
,
Qian
,
C.
,
Ma
,
X.
,
Yuan
,
X.
, and
Fan
,
Z.
,
2024
, “
Theoretical and Experimental Investigation of Material Removal Rate in Magnetorheological Shear Thickening Polishing of Ti–6Al–4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
146
(
3
), p.
031002
.
25.
Xu
,
J.
,
Nie
,
M.
,
Liu
,
Y.
, and
Li
,
J.
,
2024
, “
Effect Mechanism of Multi-phase Coupling on Particle Behaviors in Magnetorheological Foam Plane Finishing Process
,”
J. Manuf. Processes
,
109
, pp.
38
52
.
26.
Rajput
,
A. S.
,
Das
,
M.
, and
Kapil
,
S.
,
2023
, “
Investigation of Surface Characteristics on Post Processed Additively Manufactured Biomaterial Through Magnetorheological Fluid Assisted Finishing Process
,”
Wear
,
522
, p.
204684
.
27.
Xu
,
J.
,
Li
,
J.
, and
Liu
,
Y.
,
2021
, “
Investigation on the Normal Force in Cluster Magnetorheological-Porous Foam Finishing Process
,”
Tribol. Int.
,
157
, p.
106911
.
28.
Shen
,
Z.
,
Pan
,
J.
,
Zhang
,
J.
, and
Yan
,
Q.
,
2023
, “
Preparation and Processing Performance of High Steady-State Magnetorheological Finishing Fluid
,”
Smart Mater. Struct.
,
32
(
3
), p.
035032
.
29.
Sidpara
,
A.
, and
Jain
,
V. K.
,
2014
, “
Rheological Properties and Their Correlation With Surface Finish Quality in MR Fluid-Based Finishing Process
,”
Mach. Sci. Technol.
,
18
(
3
), pp.
367
385
.
30.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill Education
,
New York
.
31.
Shaw
,
M. C.
,
1996
,
Principles of Abrasive Processing
,
Clarendon Press
,
Oxford, UK
.
32.
Ghosh
,
G.
,
Sidpara
,
A.
, and
Bandyopadhyay
,
P. P.
,
2021
, “
Theoretical Analysis of Magnetorheological Finishing of HVOF Sprayed WC-Co Coating
,”
Int. J. Mech. Sci.
,
207
, p.
106629
.
You do not currently have access to this content.