Abstract

Laser direct energy deposition (DED) is an additive manufacturing technique used in aerospace, automotive, and nuclear industries. However, challenges such as porosity, cracks, microstructural inhomogeneity, and elemental segregation usually affect the mechanical properties of fabricated components. This study proposes the synergistic application of ultrasonic vibration and interpass laser remelting in DED of Inconel 625 to effectively address these issues. Ultrasonic vibration to the melt pool results in equiaxed structures and reduces micropores by inducing acoustic streaming and cavitation effects, whereas interpass laser remelting selectively melts the previously deposited layers and reduces porosity. Both techniques influence the formation and distribution of intermetallic within the deposition. A synergistic application of these methods led to minimal porosity and equiaxed grains with thinner grain boundaries. Phase analysis revealed the significant presence of similar intermetallic compounds in as-deposited and vibration-assisted samples, with (γ′) phase appearing specifically in remelted and combined techniques. Further, intermetallic compounds, which were randomly distributed in as-deposited and remelted conditions, were found predominantly near the grain boundaries when vibration was applied alone or with remelting, resulting in better mechanical properties. The synergistic effect led to ∼20% increase in microhardness, ∼75% reduction in wear-rate, ∼32% higher ultimate tensile strength, and ∼25% increase in strain, and it also significantly enhanced corrosion resistance compared to as-deposited samples. This study underscores the potential of using ultrasonic vibration and interpass remelting synergistically to enhance the overall performance of DED-fabricated Inconel 625 components, outperforming their individual effects.

References

1.
Shankar
,
V.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
2001
, “
Microstructure and Mechanical Properties of Inconel 625 Superalloy
,”
J. Nucl. Mater.
,
288
(
2–3
), pp.
222
232
.
2.
Kumar
,
S. P.
,
Elangovan
,
S.
,
Mohanraj
,
R.
, and
Ramakrishna
,
J. R.
,
2021
, “
A Review on Properties of Inconel 625 and Inconel 718 Fabricated Using Direct Energy Deposition
,”
Mater. Today: Proc.
,
46
, pp.
7892
7906
.
3.
Wei
,
H. L.
,
Mazumder
,
J.
, and
DebRoy
,
T.
,
2015
, “
Evolution of Solidification Texture During Additive Manufacturing
,”
Sci. Rep.
,
5
(
1
), pp.
1
7
.
4.
Svetlizky
,
D.
,
Das
,
M.
,
Zheng
,
B.
,
Vyatskikh
,
A. L.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Eliaz
,
N.
,
2021
, “
Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges, and Applications
,”
Mater. Today
,
49
, pp.
271
295
.
5.
Raghavan
,
S.
,
Zhang
,
B.
,
Wang
,
P.
,
Sun
,
C. N.
,
Nai
,
M. L. S.
,
Li
,
T.
, and
Wei
,
J.
,
2017
, “
Effect of Different Heat Treatments on the Microstructure and Mechanical Properties in Selective Laser Melted INCONEL 718 Alloy
,”
Mater. Manuf. Processes
,
32
(
14
), pp.
1588
1595
.
6.
Konečná
,
R.
,
Nicoletto
,
G.
,
Kunz
,
L.
, and
Bača
,
A.
,
2016
, “
Microstructure and Directional Fatigue Behavior of Inconel 718 Produced by Selective Laser Melting
,”
Procedia Struct. Integrity
,
2
, pp.
2381
2388
.
7.
Bellini
,
C.
,
Berto
,
F.
,
Di Cocco
,
V.
,
Iacoviello
,
F.
,
Mocanu
,
L. P.
, and
Razavi
,
N.
,
2021
, “
Additive Manufacturing Processes for Metals and Effects of Defects on Mechanical Strength: A Review
,”
Procedia Struct. Integrity
,
33
, pp.
498
508
.
8.
Fujishima
,
M.
,
Oda
,
Y.
,
Ashida
,
R.
,
Takezawa
,
K.
, and
Kondo
,
M.
,
2017
, “
Study on Factors for Pores and Cladding Shape in the Deposition Processes of Inconel 625 by the Directed Energy Deposition (DED) Method
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp.
200
204
.
9.
Liu
,
M.
,
Kumar
,
A.
,
Bukkapatnam
,
S.
, and
Kuttolamadom
,
M.
,
2021
, “
A Review of the Anomalies in Directed Energy Deposition (DED) Processes & Potential Solutions-Part Quality & Defects
,”
Procedia Manuf.
,
53
, pp.
507
518
.
10.
Hodgir
,
R.
,
Singh
,
R. K.
, and
Mujumdar
,
S.
,
2023
, “
Experimental Investigation of Laser Re-Melting in Directed Energy Deposition (DED) of CPM-9V
,”
Manuf. Lett.
,
35
, pp.
701
706
.
11.
Jardon
,
Z.
,
Ertveldt
,
J.
,
Lecluyse
,
R.
,
Hinderdael
,
M.
, and
Pyl
,
L.
,
2022
, “
Directed Energy Deposition Roughness Mitigation Through Laser Re-Melting
,”
Procedia CIRP
,
111
, pp.
180
184
.
12.
Chen
,
X. H.
,
Chen
,
B.
,
Cheng
,
X.
,
Li
,
G. C.
, and
Huang
,
Z.
,
2020
, “
Microstructure and Properties of Hybrid Additive Manufacturing 316L Component by Directed Energy Deposition and Laser Re-Melting
,”
J. Iron. Steel Res. Int.
,
27
, pp.
842
848
.
13.
Yao
,
Y.
,
Li
,
X.
,
Wang
,
Y. Y.
,
Zhao
,
W.
,
Li
,
G.
, and
Liu
,
R. P.
,
2014
, “
Microstructural Evolution and Mechanical Properties of Ti–Zr Beta Titanium Alloy After Laser Surface Re-Melting
,”
J. Alloys Compd.
,
583
, pp.
43
47
.
14.
dos Santos Paes
,
L. E.
,
Pereira
,
M.
,
Xavier
,
F. A.
,
Weingaertner
,
W. L.
, and
Vilarinho
,
L. O.
,
2022
, “
Lack of Fusion Mitigation in Directed Energy Deposition With Laser (DED-L) Additive Manufacturing Through Laser Re-Melting
,”
J. Manuf. Processes
,
73
, pp.
67
77
.
15.
Cho
,
S. Y.
,
Shin
,
G. Y.
, and
Shim
,
D. S.
,
2021
, “
Effect of Laser Re-Melting on the Surface Characteristics of 316L Stainless Steel Fabricated via Directed Energy Deposition
,”
J. Mater. Res. Technol.
,
15
, pp.
5814
5832
.
16.
Kim
,
M. J.
, and
Saldana
,
C.
,
2023
, “
Post-Processing of Additively Manufactured IN625 Thin-Walled Structures Using Laser Re-Melting in Directed Energy Deposition
,”
J. Manuf. Processes
,
88
, pp.
59
70
.
17.
dos Santos Paes
,
L. E.
,
Pereira
,
M.
,
Xavier
,
F. A.
,
Weingaertner
,
W. L.
,
D'Oliveira
,
A. S. C. M.
,
Costa
,
E. C.
,
Vilarinho
,
L. O.
, and
Scotti
,
A.
,
2021
, “
Understanding the Behavior of Laser Surface Remelting After Directed Energy Deposition Additive Manufacturing Through Comparing the Use of Iron and Inconel Powders
,”
J. Manuf. Processes
,
70
, pp.
494
507
.
18.
Liu
,
W.
,
Zhang
,
Z.
,
Li
,
S.
, and
Xu
,
C.
,
2023
, “
The Research on Ultrasonic Vibration Amplitudes in Ti6Al4 V DED Additive Manufacturing
,”
Alloys
,
2
(
4
), pp.
256
270
.
19.
Cao
,
Y.
,
Zhang
,
Y.
,
Ming
,
W.
,
He
,
W.
, and
Ma
,
J.
,
2023
, “
The Metal Additive-Manufacturing Technology of the Ultrasonic-Assisted Wire-and-Arc Additive-Manufacturing Process
,”
Metals
,
13
(
2
), p.
398
.
20.
Cong
,
W.
, and
Ning
,
F.
,
2017
, “
A Fundamental Investigation on Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
61
69
.
21.
Ning
,
F.
, and
Cong
,
W.
,
2020
, “
Ultrasonic Vibration-Assisted (UV-A) Manufacturing Processes: State of the Art and Future Perspectives
,”
J. Manuf. Processes
,
51
, pp.
174
190
.
22.
Balasubramani
,
N.
,
StJohn
,
D.
,
Dargusch
,
M.
, and
Wang
,
G.
,
2019
, “
Ultrasonic Processing for Structure Refinement: An Overview of Mechanisms and Application of the Interdependence Theory
,”
Materials
,
12
(
19
), p.
3187
.
23.
Zhu
,
L.
,
Yang
,
Z.
,
Xin
,
B.
,
Wang
,
S.
,
Meng
,
G.
,
Ning
,
J.
, and
Xue
,
P.
,
2021
, “
Microstructure and Mechanical Properties of Parts Formed by Ultrasonic Vibration-Assisted Laser Cladding of Inconel 718
,”
Surf. Coat. Technol.
,
410
, p.
126964
.
24.
Bhatnagar
,
S.
,
Magham
,
H. S.
,
Mullick
,
S.
, and
Gopinath
,
M.
,
2023
, “
Evaluation of Microstructure and Thermal History for TiC/Inconel 625 MMC Deposition Through Pre-Placed Laser Cladding Method With and Without the Application of Ultrasonic Vibration
,”
CIRP J. Manuf. Sci. Technol.
,
41
(
1755-5818
), pp.
453
464
.
25.
Wang
,
H.
,
Hu
,
Y.
,
Ning
,
F.
, and
Cong
,
W.
,
2020
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Effects of Ultrasonic Frequency on Microstructural and Mechanical Properties
,”
J. Mater. Process. Technol.
,
276
, p.
116395
.
26.
Alloy
,
N.
,
1965
, “
SAE International Material Specification, Nickel Alloy, Corrosion and Heat Resistant, Bars, Forgings, and Rings 52.5Ni 19Cr-3.0Mo-5.1Cb-0.90Ti-0.50Al-18Fe Consumable Electrode or Vacuum Induction Melted 1950 °F (1066 °C) Solution Heat Treated, Precipitation Hardenable
,” SAE Standard AMS5664D, Revised July 1994, Issued September 1965. .
27.
Zhang
,
P.
,
Zhou
,
X.
,
Cheng
,
X.
,
Sun
,
H.
,
Ma
,
H.
, and
Li
,
Y.
,
2020
, “
Elucidation of Bubble Evolution and Defect Formation in Directed Energy Deposition Based on Direct Observation
,”
Addit. Manuf.
,
32
, p.
101026
.
28.
Masaylo
,
D.
,
Igoshin
,
S.
,
Popovich
,
A.
, and
Popovich
,
V.
,
2020
, “
Effect of Process Parameters on Defects in Large Scale Components Manufactured by Direct Laser Deposition
,”
Mater. Today: Proc.
,
30
, pp.
665
671
.
29.
Xin
,
B.
,
Zhou
,
X.
,
Cheng
,
G.
,
Yao
,
J.
, and
Gong
,
Y.
,
2020
, “
Microstructure and Mechanical Properties of Thin-Wall Structure by Hybrid Laser Metal Deposition and Laser Remelting Process
,”
Opt. Laser Technol.
,
127
, p.
106087
.
30.
Ning
,
F.
,
Hu
,
Y.
,
Liu
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Cong
,
W.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061012
.
31.
Dash
,
B. K.
,
Bhatnagar
,
S.
,
Magham
,
H. S. R.
,
Rao
,
S.
,
Muvvala
,
G.
, and
Mullick
,
S.
,
2024
, “
Effect of Ultrasonic Vibration on Microstructural Evolution, Clad Defects, and Surface Properties in Laser Direct Energy Deposition of Inconel 625
,”
J. Laser Appl.
,
36
(
2
), pp.
1
15
.
32.
Yu
,
Z.
,
Zheng
,
Y.
,
Chen
,
J.
,
Wu
,
C.
,
Xu
,
J.
,
Lu
,
H.
, and
Yu
,
C.
,
2020
, “
Effect of Laser Remelting Processing on Microstructure and Mechanical Properties of 17-4 PH Stainless Steel During Laser Direct Metal Deposition
,”
J. Mater. Process. Technol.
,
284
, p.
116738
.
33.
Bukhari
,
S. M. A.
,
Husnain
,
N.
,
Siddiqui
,
F. A.
,
Anwar
,
M. T.
,
Khosa
,
A. A.
,
Imran
,
M.
,
Qureshi
,
T. H.
, and
Ahmad
,
R.
,
2023
, “
Effect of Laser Surface Remelting on Microstructure, Mechanical Properties and Tribological Properties of Metals and Alloys: A Review
,”
Opt. Laser Technol.
,
165
, p.
109588
.
34.
Todaro
,
C. J.
,
Easton
,
M. A.
,
Qiu
,
D.
,
Brandt
,
M.
,
StJohn
,
D. H.
, and
Qian
,
M.
,
2021
, “
Grain Refinement of Stainless Steel in Ultrasound-Assisted Additive Manufacturing
,”
Addit. Manuf.
,
37
, p.
101632
.
35.
Wang
,
S.
,
Kang
,
J.
,
Guo
,
Z.
,
Lee
,
T. L.
,
Zhang
,
X.
,
Wang
,
Q.
,
Deng
,
C.
, and
Mi
,
J.
,
2019
, “
In Situ High Speed Imaging Study and Modelling of the Fatigue Fragmentation of Dendritic Structures in Ultrasonic Fields
,”
Acta Mater.
,
165
, pp.
388
397
.
36.
Wang
,
F.
,
Tzanakis
,
I.
,
Eskin
,
D.
,
Mi
,
J.
, and
Connolley
,
T.
,
2017
, “
In Situ Observation of Ultrasonic Cavitation-Induced Fragmentation of the Primary Crystals Formed in Al Alloys
,”
Ultrason. Sonochem.
,
39
, pp.
66
76
.
37.
Kim
,
T. H.
,
Baek
,
G. Y.
,
Jeon
,
J. B.
,
Lee
,
K. Y.
,
Shim
,
D. S.
, and
Lee
,
W.
,
2021
, “
Effect of Laser Rescanning on Microstructure and Mechanical Properties of Direct Energy Deposited AISI 316L Stainless Steel
,”
Surf. Coat. Technol.
,
405
, p.
126540
.
38.
Zhang
,
D.
,
Niu
,
W.
,
Cao
,
X.
, and
Liu
,
Z.
,
2015
, “
Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting Manufactured Inconel 718 Superalloy
,”
Mater. Sci. Eng. A
,
644
, pp.
32
40
.
39.
Stevens
,
E. L.
,
Toman
,
J.
,
To
,
A. C.
, and
Chmielus
,
M.
,
2017
, “
Variation of Hardness, Microstructure, and Laves Phase Distribution in Direct Laser Deposited Alloy 718 Cuboids
,”
Mater. Des.
,
119
, pp.
188
198
.
40.
Li
,
X.
,
Shi
,
J. J.
,
Wang
,
C. H.
,
Cao
,
G. H.
,
Russell
,
A. M.
,
Zhou
,
Z. J.
,
Li
,
C. P.
, and
Chen
,
G. F.
,
2018
, “
Effect of Heat Treatment on Microstructure Evolution of Inconel 718 Alloy Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
764
, pp.
639
649
.
41.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X.
,
Chen
,
X.
, and
Zeng
,
X.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloys Compd.
,
513
, pp.
518
523
.
42.
Gamon
,
A.
,
Arrieta
,
E.
,
Gradl
,
P. R.
,
Katsarelis
,
C.
,
Murr
,
L. E.
,
Wicker
,
R. B.
, and
Medina
,
F.
,
2021
, “
Microstructure and Hardness Comparison of as-Built Inconel 625 Alloy Following Various Additive Manufacturing Processes
,”
Results Mater.
,
12
(
2021
), p.
100239
.
43.
Praharaj
,
A. K.
,
Chaurasia
,
J. K.
,
Chandan
,
G. R.
,
Bontha
,
S.
, and
Suvin
,
P. S.
,
2024
, “
Enhanced Tribological Performance of Laser Directed Energy Deposited Inconel 625 Achieved Through Laser Surface Remelting
,”
Surf. Coat. Technol.
,
477
, p.
130345
.
44.
Zhao
,
X.
,
Chen
,
J.
,
Lin
,
X.
, and
Huang
,
W.
,
2008
, “
Study on Microstructure and Mechanical Properties of Laser Rapid Forming Inconel 718
,”
Mater. Sci. Eng. A
,
478
(
1–2
), pp.
119
124
.
45.
Feng
,
K.
,
Chen
,
Y.
,
Deng
,
P.
,
Li
,
Y.
,
Zhao
,
H.
,
Lu
,
F.
,
Huang
,
J.
, and
Li
,
Z.
,
2017
, “
Improved High-Temperature Hardness and Wear Resistance of Inconel 625 Coatings Fabricated by Laser Cladding
,”
J. Mater. Process. Technol.
,
243
, pp.
82
91
.
46.
Li
,
C.
,
White
,
R.
,
Fang
,
X. Y.
,
Weaver
,
M.
, and
Guo
,
Y. B.
,
2017
, “
Microstructure Evolution Characteristics of Inconel 625 Alloy From Selective Laser Melting to Heat Treatment
,”
Mater. Sci. Eng. A
,
705
, pp.
20
31
.
47.
Ma
,
Q.
,
Chen
,
H.
,
Ren
,
N.
,
Zhang
,
Y.
,
Hu
,
L.
,
Meng
,
W.
, and
Yin
,
X.
,
2021
, “
Effects of Ultrasonic Vibration on Microstructure, Mechanical Properties, and Fracture Mode of Inconel 625 Parts Fabricated by Cold Metal Transfer Arc Additive Manufacturing
,”
J. Mater. Eng. Perform.
,
30
, pp.
6808
6820
.
48.
Yan
,
X.
,
Gao
,
S.
,
Chang
,
C.
,
Huang
,
J.
,
Khanlari
,
K.
,
Dong
,
D.
,
Ma
,
W.
,
Fenineche
,
N.
,
Liao
,
H.
, and
Liu
,
M.
,
2021
, “
Effect of Building Directions on the Surface Roughness, Microstructure, and Tribological Properties of Selective Laser Melted Inconel 625
,”
J. Mater. Process. Technol.
,
288
, p.
116878
.
49.
Jeyaprakash
,
N.
,
Yang
,
C. H.
,
Prabu
,
G.
, and
Clinktan
,
R.
,
2022
, “
Microstructure and Tribological Behaviour of Inconel-625 Superalloy Produced by Selective Laser Melting
,”
Met. Mater. Int.
,
28
(
12
), pp.
2997
3015
.
50.
Liu
,
Y.
,
Huang
,
X.
,
Li
,
Y.
,
Peng
,
H.
,
Qi
,
H.
, and
Azer
,
M.
,
2006
, “
Microstructure and Mechanical Properties of Laser Net Shape Manufactured Inconel 718 and Ti-6Al-4V Components
,”
International Congress on Applications of Lasers & Electro-OpticsLaser Institute of America
,
Scoltsdal, AZ
,
Oct.
.
51.
Wang
,
T.
,
Wang
,
C.
,
Li
,
J.
,
Chai
,
L.
,
Hu
,
X.
,
Ma
,
Y.
, and
Huang
,
Y.
,
2021
, “
Microstructure and Wear Properties of Laser-Clad NiCo Alloy Coating on Inconel 718 Alloy
,”
J. Alloys Compd.
,
879
, p.
160412
.
52.
Lodhi
,
M. J. K.
,
Deen
,
K. M.
,
Greenlee-Wacker
,
M. C.
, and
Haider
,
W.
,
2019
, “
Additively Manufactured 316L Stainless Steel With Improved Corrosion Resistance and Biological Response for Biomedical Applications
,”
Addit. Manuf.
,
27
, pp.
8
19
.
53.
Wang
,
J.
,
Cui
,
X.
,
Jin
,
G.
,
Zhao
,
Y.
,
Wen
,
X.
, and
Zhang
,
Y.
,
2023
, “
Effect of In-Situ Ni Interlayer on the Microstructure and Corrosion Resistance of Underwater Wet 316L Stainless Steel Laser Cladding Layer
,”
Surf. Coat. Technol.
,
458
, p.
129341
.
54.
Olakanmi
,
E. O.
,
Malikongwa
,
K.
,
Nyadongo
,
S. T.
,
Hoosain
,
S.
, and
Pityana
,
S. L.
,
2021
, “
Consolidation Mechanism, Microstructural Evolution and Corrosion Resistance of Inconel 625 Coatings
,”
Surf. Eng.
,
37
(
2
), pp.
212
225
.
55.
Shen
,
F.
,
Tao
,
W.
,
Li
,
L.
,
Zhou
,
Y.
,
Wang
,
W.
, and
Wang
,
S.
,
2020
, “
Effect of Microstructure on the Corrosion Resistance of Coatings by Extreme High Speed Laser Cladding
,”
Appl. Surf. Sci.
,
517
, p.
146085
.
56.
Hu
,
X. U.
,
2021
, “
Additively Manufactured Lead Zirconate Titanate–Polymer Composites With Sheet-Based Triply Periodic Minimal Surface Structures
,” Doctoral Dissertation RMIT University, Australia.
You do not currently have access to this content.