Abstract

This study attempts to elucidate the quasi-isotropic behavior observed in laser-based powder bed fusion of Inconel 718 (IN718) alloy. This effort emphasizes the effect of laser process parameters on crystal orientation and subsequent mechanical behavior. The plate-type IN718 rectangular coupons were deposited using a laser powder bed fusion technique with a volumetric energy density of 66.29 J/mm3 and a scanning strategy of 67 deg rotational between each consecutive layer. These coupons were solution-treated, and subsequently, precipitation-hardened. Quasi-isotropic mechanical properties were observed in the coupons through tensile experiments performed along 0 deg and 90 deg to the building direction. Electron backscattered diffraction studies have indicated the development of an <001> orientation in the as-built and precipitation-hardened coupons. But, the solution-treated coupons deviated from the ideal <001> orientation. However, X-ray diffraction studies revealed the presence of a weak cube texture for all thermally-treated conditions. The scanning strategy and volumetric energy density led to the development of the weak cube texture in the as-built sample, which is thus implicated in the quasi-isotropic mechanical properties in the printed coupons.

References

1.
Wang
,
X.
,
Gong
,
X.
, and
Chou
,
K.
,
2017
, “
Review on Powder-Bed Laser Additive Manufacturing of Inconel 718 Parts
,”
Proc. Inst. Mech. Eng. B. J. Eng. Manuf.
,
231
(
11
), pp.
1890
1903
.
2.
Awad
,
A.
,
Goyanes
,
A.
,
Basit
,
A. W.
,
Zidan
,
A. S.
,
Xu
,
C.
,
Li
,
W.
,
Narayan
,
R. J.
, and
Chen
,
R. K.
,
2023
, “
A Review of State-of-the-Art on Enabling Additive Manufacturing Processes for Precision Medicine
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
010802
.
3.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Jawahir
,
I. S.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
Future Research Directions in the Machining of Inconel 718
,”
J. Mater. Process. Technol.
,
297
, p.
117260
.
4.
Wang
,
Y.
, and
Shi
,
J.
,
2020
, “
Effect of Post Heat Treatment on the Microstructure and Tensile Properties of Nano TiC Particulate Reinforced Inconel 718 by Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051004
.
5.
Wang
,
Y.
,
Shi
,
J.
,
Lu
,
S.
, and
Wang
,
Y.
,
2017
, “
Selective Laser Melting of Graphene-Reinforced Inconel 718 Superalloy: Evaluation of Microstructure and Tensile Performance
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041005
.
6.
Narasimharaju
,
S. R.
,
Zeng
,
W.
,
See
,
T. L.
,
Zhu
,
Z.
,
Scott
,
P.
,
Jiang
,
X.
, and
Lou
,
S.
,
2022
, “
A Comprehensive Review on Laser Powder Bed Fusion of Steels: Processing, Microstructure, Defects and Control Methods, Mechanical Properties, Current Challenges and Future Trends
,”
J. Manuf. Process.
,
75
, pp.
375
414
.
7.
Lan
,
B.
,
Wang
,
Y.
,
Liu
,
Y.
,
Hooper
,
P.
,
Hopper
,
C.
,
Zhang
,
G.
,
Zhang
,
X.
, and
Jiang
,
J.
,
2021
, “
The Influence of Microstructural Anisotropy on the Hot Deformation of Wire Arc Additive Manufactured (WAAM) Inconel 718
,”
Mater. Sci. Eng. A
,
823
, p.
141733
.
8.
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2012
, “
Texture Control During Laser Deposition of Nickel-Based Superalloy
,”
Scr. Mater.
,
67
(
5
), pp.
503
506
.
9.
Wei
,
H. L.
,
Mazumder
,
J.
, and
DebRoy
,
T.
,
2015
, “
Evolution of Solidification Texture During Additive Manufacturing
,”
Sci. Rep.
,
5
(
1
), p.
16446
.
10.
Praveen Kumar
,
V.
, and
Vinoth Jebaraj
,
A.
,
2023
, “
Microscale Investigations on Additively Manufactured Inconel 718: Influence of Volumetric Energy Density on Microstructure, Texture Evolution, Defects Control and Residual Stress
,”
Appl. Phys. A Mater. Sci. Process
,
129
(
5
), p.
370
.
11.
Liu
,
S. Y.
,
Li
,
H. Q.
,
Qin
,
C. X.
,
Zong
,
R.
, and
Fang
,
X. Y.
,
2020
, “
The Effect of Energy Density on Texture and Mechanical Anisotropy in Selective Laser Melted Inconel 718
,”
Mater. Des.
,
191
, p.
108642
.
12.
Nadammal
,
N.
,
Mishurova
,
T.
,
Fritsch
,
T.
,
Serrano-Munoz
,
I.
,
Kromm
,
A.
,
Haberland
,
C.
,
Portella
,
P. D.
, and
Bruno
,
G.
,
2021
, “
Critical Role of Scan Strategies on the Development of Microstructure, Texture, and Residual Stresses During Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
38
, p.
101792
.
13.
Watring
,
D. S.
,
Benzing
,
J. T.
,
Hrabe
,
N.
, and
Spear
,
A. D.
,
2020
, “
Effects of Laser-Energy Density and Build Orientation on the Structure–Property Relationships in As-Built Inconel 718 Manufactured by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
36
, p.
101425
.
14.
Popovich
,
V. A.
,
Borisov
,
E. V.
,
Popovich
,
A. A.
,
Sufiiarov
,
V. S.
,
Masaylo
,
D. V.
, and
Alzina
,
L.
,
2017
, “
Impact of Heat Treatment on Mechanical Behaviour of Inconel 718 Processed With Tailored Microstructure by Selective Laser Melting
,”
Mater. Des.
,
131
, pp.
12
22
.
15.
Ozer
,
S.
,
Bilgin
,
G. M.
,
Davut
,
K.
,
Esen
,
Z.
, and
Dericioglu
,
A. F.
,
2022
, “
Effect of Post Fabrication Aging Treatment on the Microstructure, Crystallographic Texture and Elevated Temperature Mechanical Properties of IN718 Alloy Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
306
, p.
117622
.
16.
Fayed
,
E. M.
,
Saadati
,
M.
,
Shahriari
,
D.
,
Brailovski
,
V.
,
Jahazi
,
M.
, and
Medraj
,
M.
,
2021
, “
Optimization of the Post-Process Heat Treatment of Inconel 718 Superalloy Fabricated by Laser Powder Bed Fusion Process
,”
Metals (Basel)
,
11
(
1
), pp.
1
27
.
17.
Yi
,
J. H.
,
Kang
,
J. W.
,
Wang
,
T. J.
,
Wang
,
X.
,
Hu
,
Y. Y.
,
Feng
,
T.
,
Feng
,
Y. L.
, and
Wu
,
P. Y.
,
2019
, “
Effect of Laser Energy Density on the Microstructure, Mechanical Properties, and Deformation of Inconel 718 Samples Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
786
, pp.
481
488
.
18.
Gokcekaya
,
O.
,
Ishimoto
,
T.
,
Hibino
,
S.
,
Yasutomi
,
J.
,
Narushima
,
T.
, and
Nakano
,
T.
,
2021
, “
Unique Crystallographic Texture Formation in Inconel 718 by Laser Powder Bed Fusion and Its Effect on Mechanical Anisotropy
,”
Acta Mater.
,
212
, p.
116876
.
19.
2021
, Specification for Additive Manufacturing Nickel Alloy (UNS N07718) With Powder Bed Fusion.
20.
ASTM International
,
2016
,
E8/E8M−16a: Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
21.
ASTM International
,
2015
,
E407: Standard Practice for Microetching Metals and Alloys
,
ASTM International
,
West Conshohocken, PA
, pp.
1
21
.
22.
Bachmann
,
F.
,
Hielscher
,
R.
, and
Schaeben
,
H.
,
2010
, “
Texture Analysis with MTEX – Free and Open Source Software Toolbox
,”
Solid State Phenomena
,
160
, pp.
63
68
. www.scientific.net/SSP.160.63
23.
Sharma
,
S.
,
Palaniappan
,
K.
,
Mishra
,
V. D.
,
Vedantam
,
S.
,
Murthy
,
H.
, and
Rao
,
B. C.
,
2023
, “
Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
54
(
1
), pp.
270
285
.
24.
Kou
,
S.
,
2003
,
Welding Metallurgy
,
John Wiley & Sons
,
Hoboken, New Jersey
, pp.
163
166
.
25.
Chlebus
,
E.
,
Gruber
,
K.
,
Kuźnicka
,
B.
,
Kurzac
,
J.
, and
Kurzynowski
,
T.
,
2015
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
639
, pp.
647
655
.
26.
Xiao
,
H.
,
Xie
,
P.
,
Cheng
,
M.
, and
Song
,
L.
,
2020
, “
Enhancing Mechanical Properties of Quasi-Continuous-Wave Laser Additive Manufactured Inconel 718 Through Controlling the Niobium-Rich Precipitates
,”
Addit. Manuf.
,
34
, p.
101278
.
27.
Gruber
,
K.
,
Stopyra
,
W.
,
Kobiela
,
K.
,
Madejski
,
B.
,
Malicki
,
M.
, and
Kurzynowski
,
T.
,
2022
, “
Mechanical Properties of Inconel 718 Additively Manufactured by Laser Powder Bed Fusion After Industrial High-Temperature Heat Treatment
,”
J. Manuf. Process.
,
73
, pp.
642
659
.
28.
Ramakrishna
,
M.
,
Koppoju
,
S.
,
Telasang
,
G.
,
Korla
,
R.
, and
Padmanabham
,
G.
,
2021
, “
Effect of Solutionizing Temperature on the Microstructural Evolution During Double Aging of Powder Bed Fusion-Additive Manufactured IN718 Alloy
,”
Mater. Charact.
,
172
, p.
110868
.
29.
Chandler
,
H.
,
1996
,
Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys
,
ASM International
,
Materials Park, OH
.
30.
Stoloff
,
N. S.
,
1990
, “Wrought and P/M Superalloys,”
ASM Handbook Volume 1–Properties and Selection: Irons, Steels, and High-Performance Alloys
,
S. R.
Lampman
,
T. B.
Zorc
,
H. F.
Lampman
,
G. M.
Crankovic
,
A. W.
Ronke
,
S. D.
Henry
, and
J. L.
Daquila
, eds., 10th ed.,
ASM International
,
Materials Park, OH
, pp.
950
977
.
31.
Wang
,
X.
, and
Chou
,
K.
,
2017
, “
Electron Backscatter Diffraction Analysis of Inconel 718 Parts Fabricated by Selective Laser Melting Additive Manufacturing
,”
JOM
,
69
(
2
), pp.
402
408
.
32.
Ardakani
,
M. G.
,
Souza
,
N. D.
,
Wagner
,
A.
,
Shollock
,
B. A.
, and
McLean
,
M.
,
2012
, “
Competitive Grain Growth and Texture Evolution During Directional Solidification of Superalloys
,”
Miner. Metals Mater. Soc.
,
10
, pp.
219
228
.
33.
Liu
,
F.
,
Lin
,
X.
,
Huang
,
C.
,
Song
,
M.
,
Yang
,
G.
,
Chen
,
J.
, and
Huang
,
W.
,
2011
, “
The Effect of Laser Scanning Path on Microstructures and Mechanical Properties of Laser Solid Formed Nickel-Base Superalloy Inconel 718
,”
J. Alloys Compd.
,
509
(
13
), pp.
4505
4509
.
34.
Bunge
,
H.-J.
,
1982
,
Texture Analysis in Materials Science: Mathematical Methods
,
Butterworths
,
London
.
35.
Zhou
,
L.
,
Mehta
,
A.
,
McWilliams
,
B.
,
Cho
,
K.
, and
Sohn
,
Y.
,
2019
, “
Microstructure, Precipitates and Mechanical Properties of Powder Bed Fused Inconel 718 Before and After Heat Treatment
,”
J. Mater. Sci. Technol.
,
35
(
6
), pp.
1153
1164
.
36.
Sabzi
,
H. E.
,
Hernandez-Nava
,
E.
,
Li
,
X. H.
,
Fu
,
H.
,
San-Martín
,
D.
, and
Rivera-Díaz-del-Castillo
,
P. E. J.
,
2021
, “
Strengthening Control in Laser Powder Bed Fusion of Austenitic Stainless Steels Via Grain Boundary Engineering
,”
Mater. Des.
,
212
, p.
110246
.
37.
Wright
,
S. I.
,
Nowell
,
M. M.
, and
Bingert
,
J. F.
,
2007
, “
A Comparison of Textures Measured Using X-ray and Electron Backscatter Diffraction
,”
Metall. Mater. Trans. A
,
38
(
8
), pp.
1845
1855
.
38.
Xu
,
B.
,
Sun
,
J.
,
Yang
,
Z.
,
Han
,
J.
,
Fu
,
Y.
,
Jiang
,
J.
, and
Ma
,
A.
,
2020
, “
A Near-Isotropic Ultrafine-Grained Mg-Gd-Ag Alloy With High Strength-Ductility Synergy
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
13616
13624
.
39.
Li
,
X. P.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2017
, “
Selective Laser Melting of Weak-Textured Commercially Pure Titanium With High Strength and Ductility: A Study From Laser Power Perspective
,”
Mater. Des.
,
116
, pp.
352
358
.
40.
Yan
,
Z.
,
Liu
,
W.
,
Tang
,
Z.
,
Liu
,
X.
,
Zhang
,
N.
,
Li
,
M.
, and
Zhang
,
H.
,
2018
, “
Review on Thermal Analysis in Laser-Based Additive Manufacturing
,”
Opt. Laser Technol.
,
106
, pp.
427
441
.
41.
Liu
,
Y.
, and
Shi
,
J.
,
2023
, “
Epitaxial Growth and Stray Grain Control Toward Single-Crystal Metallic Materials by Additive Manufacturing: A Review
,”
Adv. Eng. Mater.
,
25
(
14
), p.
2201917
.
42.
Ji
,
J.
,
Kwak
,
H.-M.
,
Yu
,
J.
,
Park
,
S.
,
Park
,
J.-H.
,
Kim
,
H.
,
Kim
,
S.
,
Kim
,
S.
,
Lee
,
D.-S.
, and
Kum
,
H. S.
,
2023
, “
Understanding the 2D-Material and Substrate Interaction During Epitaxial Growth Towards Successful Remote Epitaxy: A Review
,”
Nano Converg.
,
10
(
1
), pp.
1
21
.
43.
Dwivedi
,
A.
,
Khurana
,
M. K.
, and
Bala
,
Y. G.
,
2023
, “
Heat-Treated Nickel Alloys Produced Using Laser Powder Bed Fusion-Based Additive Manufacturing Methods: A Review
,”
Chin. J. Mech. Eng.: Addit. Manuf. Front.
,
2
(
3
), p.
100087
.
44.
Ghayoor
,
M.
,
Lee
,
K.
,
He
,
Y.
,
Chang
,
C.-H.
,
Paul
,
B. K.
, and
Pasebani
,
S.
,
2020
, “
Selective Laser Melting of 304L Stainless Steel: Role of Volumetric Energy Density on the Microstructure, Texture and Mechanical Properties
,”
Addit. Manuf.
,
32
, p.
101011
.
45.
Alhuzaim
,
A.
,
Imbrogno
,
S.
, and
Attallah
,
M. M.
,
2021
, “
Controlling Microstructural and Mechanical Properties of Direct Laser Deposited Inconel 718 Via Laser Power
,”
J. Alloys Compd.
,
872
, p.
159588
.
46.
Tang
,
S.
,
Wang
,
Z.
,
Guo
,
Y.
,
Wang
,
J.
,
Yu
,
Y.
, and
Zhou
,
Y.
,
2012
, “
Orientation Selection Process During the Early Stage of Cubic Dendrite Growth: A Phase-Field Crystal Study
,”
Acta Mater.
,
60
(
15
), pp.
5501
5507
.
47.
Kurz
,
W.
,
Fisher
,
D. J.
, and
Rappaz
,
M.
,
2023
,
Fundamentals of Solidification 5th Fully Revised Edition With Solutions Manual
,
Trans Tech Publications Ltd.
,
Switzerland
.
48.
Cao
,
Y.
,
Bai
,
P.
,
Liu
,
F.
, and
Hou
,
X.
,
2020
, “
Grain Growth in IN718 Superalloy Fabricated by Laser Additive Manufacturing
,”
Mater. Sci. Technol.
,
36
(
6
), pp.
765
769
.
49.
Xia
,
M.
,
Gu
,
D.
,
Yu
,
G.
,
Dai
,
D.
,
Chen
,
H.
, and
Shi
,
Q.
,
2016
, “
Selective Laser Melting 3D Printing of Ni-Based Superalloy: Understanding Thermodynamic Mechanisms
,”
Sci. Bull. (Beijing)
,
61
(
13
), pp.
1013
1022
.
50.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Kirshnamurty
,
S.
,
2020
, “
3D Build Melt Pool Predictive Modeling for Powder Bed Fusion Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, p.
V009T09A046
.
51.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2020
, “
From Scan Strategy to Melt Pool Prediction: A Neighboring-Effect Modeling Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051001
.
52.
Abd-Elaziem
,
W.
,
Elkatatny
,
S.
,
Abd-Elaziem
,
A. E.
,
Khedr
,
M.
,
Abd El-Baky
,
M. A.
,
Hassan
,
M. A.
,
Abu-Okail
,
M.
, et al.
,
2022
, “
On the Current Research Progress of Metallic Materials Fabricated by Laser Powder Bed Fusion Process: A Review
,”
J. Mater. Res. Technol.
,
20
, pp.
681
707
.
53.
Liu
,
L.
,
Wang
,
D.
,
Yang
,
Y.
,
Wang
,
Z.
,
Qian
,
Z.
,
Wu
,
S.
,
Tang
,
J.
,
Han
,
C.
, and
Tan
,
C.
,
2023
, “
Effect of Scanning Strategies on the Microstructure and Mechanical Properties of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion
,”
Adv. Eng. Mater.
,
25
(
5
), p.
2200492
.
54.
Wan
,
H. Y.
,
Zhou
,
Z. J.
,
Li
,
C. P.
,
Chen
,
G. F.
, and
Zhang
,
G. P.
,
2018
, “
Effect of Scanning Strategy on Grain Structure and Crystallographic Texture of Inconel 718 Processed by Selective Laser Melting
,”
J. Mater. Sci. Technol.
,
34
(
10
), pp.
1799
1804
.
55.
Pakkanen
,
J. A.
, Designing for Additive Manufacturing-Product and Process Driven Design for Metals and Polymers.
56.
Jia
,
H.
,
Sun
,
H.
,
Wang
,
H.
,
Wu
,
Y.
, and
Wang
,
H.
,
2021
, “
Scanning Strategy in Selective Laser Melting (SLM): A Review
,”
Int. J. Adv. Manuf. Technol.
,
113
, pp.
2413
2435
.
57.
Newell
,
D. J.
,
O’Hara
,
R. P.
,
Cobb
,
G. R.
,
Palazotto
,
A. N.
,
Kirka
,
M. M.
,
Burggraf
,
L. W.
, and
Hess
,
J. A.
,
2019
, “
Mitigation of Scan Strategy Effects and Material Anisotropy Through Supersolvus Annealing in LPBF IN718
,”
Mater. Sci. Eng. A
,
764
, p.
138230
.
58.
Chen
,
Y.
,
Wang
,
W.
,
Ou
,
Y.
,
Chang
,
H.
,
Wu
,
Y.
,
Yang
,
R.
,
Zhai
,
Z.
,
Li
,
K.
, and
Shen
,
L.
,
2024
, “
Microstructure and Mechanical Property Comparison of Inconel Alloys Fabricated Using Micro and Conventional Laser Powder Bed Fusion
,”
Mater. Des.
,
237
, p.
112534
.
You do not currently have access to this content.