A study of the fundamental fatigue behavior of G-10 grade, glass fiber-reinforced composite laminate in a liquid nitrogen environment is presented. Both uniaxial tensile and pure torsional fatigue failure of the fiber composite are investigated. Cryogenic fatigue degradation of the composite in terms of stiffness reduction, energy dissipation, and cyclic fracture is examined in detail. Influences of loading mode, fiber orientation, surface condition, and geometric variables are studied also. Fatigue damage mechanisms at cryogenic temperatures under various loading conditions are discussed.

This content is only available via PDF.
You do not currently have access to this content.