The paper represents an extended text of a lecture presenting a review of recent results on scaling of failure in structures made of quasibrittle materials, characterized by a large fracture process zone, and examining the question of possible role of the fractal nature of crack surfaces in the scaling. The problem of scaling is approached through dimensional analysis, the laws of thermodynamics and asymptotic matching. Large-size and small-size asymptotic expansions of the size effect on the nominal strength of structures are given, for specimens with large notches (or traction-free cracks) as well as zero notches, and simple size effect formulas matching the required asymptotic properties are reported. The asymptotic analysis is carried out, in general, for fractal cracks, and the practically important case ofnonfractal crack propagation is acquired as a special case. Regarding the fractal nature of crack surfaces in quasibrittle materials, the conclusion is that it cannot play a signification role in fracture propagation and the observed size effect. The reason why Weibull statistical theory of random material strength does not explain the size effect in quasibrittle failures is explained. Finally, some recent applications to fracture simulation by particle models (discrete element method) and to the determination of size effect and fracture characteristics of carbon-epoxy composite laminates are briefly reviewed.

1.
ACI Committee 446, 1992, “Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties,” State-of-Art Report of Am. Concrete Institute (ACI) in Fracture Mechanics of Concrete Structures, Z. P. Bazˇant, ed., Elsevier, London, pp. 1–140.
2.
Bao
G.
,
Ho
S.
,
Suo
Z.
, and
Fan
B.
,
1992
, “
The Role of Material Orthotropy in Fracture Specimens for Composites
,”
Int. J. Solid Structures
, Vol.
29
(
9
), pp.
1105
1116
.
3.
Barenblatt, G. I., 1979, Similarity, Self-Similarity and Intermediate Asymptotics, Consultants Bureau, New York, N.Y.
4.
Bazˇant, Z. P., 1983, “Fracture in Concrete and Reinforced Concrete,” Mechanics of Geomaterials: Rocks, Concretes, Soils, Preprints, IUTAM Prager Symposium held at Northwestern University, Z. P. Bazˇant, ed., Evanston, IL. pp. 281–317.
5.
Bazˇant
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. of Engng. Mechanics
, ASCE, Vol.
110
, pp.
518
535
.
6.
Bazˇant, Z. P., 1985, “Fracture Mechanics and Strain-Softening in Concrete,” Preprints, U.S.-Japan Seminar on Finite Element Analysis of Reinforced Concrete Structures, Tokyo, Vol. 1, pp. 47–69.
7.
Bazˇant, Z. P., 1987, “Fracture Energy of Heterogeneous Material and Similitude,” Preprints, SEM-RILEM Int. Conf. on Fracture of Concrete and Rock, (Houston, Texas, June 1987), S. P. Shah and S. E. Swartz, eds., publ. by SEM (Soc. for Exper. Mech.), pp. 390–402.
8.
Bazˇant
Z. P.
,
1993
, “
Scaling Laws in Mechanics of Failure
,”
J. of Engrg. Mech.
, ASCE, Vol.
119
(
9
), pp.
1828
1844
.
9.
Bazˇant, Z. P., 1993, “Size Effect in Tensile and Compressive Quasibrittle Failures,” Preprints, JCI International Workshop on Size Effect in Concrete Structures, Tohoku University, Sendai, Japan, Oct. 141–160. also Proceedings, Size Effect in Concrete Structures, H. Mihashi, H. Okamura and Z. P. Bazˇant, eds., E. & F. N. Spon, London-New York, 1994, pp. 161–180.
10.
Bazant, Z. P., and Cedolin, L., 1991, Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories (textbook and reference volume), Oxford University Press, New York.
11.
Bazˇant, Z. P., Daniel, I., and Li, Z., 1995, “Size Effect and Fracture Characteristics of Fiber-Composite Laminates,” Report. Dept. of Civil Engng., Northwestern University, Evanston, Illinois; also ASME JEMT, submitted to.
12.
Bazant
Z. P.
, and
Kazemi
M. T.
,
1991
, “
Size Effect on Diagonal Shear Failure of Beams Without Stirrups
,”
ACI Structural J.
, Vol.
88
, pp.
268
276
.
13.
Bazant
Z. P.
, and
Kazemi
M. T.
,
1990
, “
Size Effect in Fracture of Ceramics and its Use to Determine Fracture Energy and Effective Process Zone Length
,”
J. of American Ceramic Society
, Vol.
73
(
7
), pp.
1841
1853
.
14.
Bazˇant, Z. P., Li, Zhengzhi., and Li, Yuan-Neg, 1995, “Modulus of Rupture: Size Effect Due to Fracture Initiation in Boundary Layer,” J. of Structural Engrg. ASCE, Vol. 121, in press.
15.
Bazˇant
Z. P.
,
Lin
F.-B.
, and
Lippmann
H.
,
1993
, “
Fracture Energy Release and Size Effect in Borehole Breakout
,”
Int. Journal for Numerical and Analytical Methods in Geomechanics
, Vol.
17
, pp.
1
14
.
16.
Bazˇant
Z. P.
,
Ozˇbolt
J.
, and
Eligehausen
R.
,
1994
, “
Fracture Size Effect: Review of Evidence for Concrete Structures
,”
J. of Struct. Engrg.
, ASCE, Vol.
120
(
8
), pp.
2377
2398
.
17.
Bazˇant
Z. P.
, and
Pfeiffer
P. A.
,
1987
, “
Determination of Fracture Energy from Size Effect and Brittleness Number
,”
ACI Materials Jour.
, Vol.
84
, pp.
463
480
.
18.
Bazˇant
Z. P.
,
Tabbara
M. R.
,
Kazemi
M. T.
, and
Pijaudier-Cabot
G.
,
1990
, “
Random Particle Model for Fracture of Aggregate or Fiber Composites
,”
ASCE J. of Engng. Mech.
, Vol.
116
(
8
), pp.
1686
1705
.
19.
Bazˇant
Z. P.
, and
Xi
Y.
,
1991
, “
Statistical Size Effect in Quasi-Brittle Structures: II. Nonlocal Theory
,”
ASCE J. of Engineering Mechanics
, Vol.
117
(
11
), pp.
2623
2640
.
20.
Bender, M. C., and Orszag, S. A., 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, Chapters 9–11.
21.
Borodich
F.
,
1992
, “
Fracture Energy of Fractal Crack, Propagation in Concrete and Rock
,” (in Russian).
Doklady Akademii Nauk
, Vol.
325
(
6
), pp.
1138
1141
.
22.
Carpinteri, A., 1986, Mechanical Damage and Crack Growth in Concrete, Martinus Nijhoff Publishers, Doordrecht.
23.
Carpinteri, A., Chiaia, B., and Ferro, G., 1993, “Multifractal Scaling Law for the Nominal Strength Variation of Concrete Structures,” Size Effect in Concrete Structures, Proc., Japan Concrete Institute Intern. Workshop held in Sendai, Japan, Nov. 1995, M. Mihashi, H. Okamura and Z. P. Bazˇant, eds., E. & F. N. Spon, London-New York, pp. 193–206.
24.
Carpinteri, A., Chiaia, B., and Ferro, G., 1995, “Multifractal Nature of Material Microstructure and Size Effects on Nominal Tensile Strength,” Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics, Proc., IUTAM Symp., Univ. of Qeensland, Brisbane, Sept. 1993), G. Baker and B. L. Karihaloo, eds., E. & F. N. Spon, London, pp. 21–50.
25.
Carpinteri
A.
,
1994
, “
Fractal Nature of Material Microstructure and Size Effects on Apparent Mechanical Properties
,”
Mechanics of Materials
, Vol.
18
, pp.
89
101
.
26.
Cahn
R.
,
1989
, “
Fractal Dimension and Fracture
,”
Nature
, Vol.
338
, Mar., pp.
201
202
.
27.
Gettu
R.
,
Bazˇant
, and
Karr
M. E.
,
1990
, “
Fracture Properties and Brittleness of High-Strength Concrete
,”
ACI Materials Journal
, Vol.
87
, Nov.-Dec, pp.
608
618
.
28.
Hillerborg
A.
,
1985
a, “
Theoretical Basis of Method to Determine the Fracture Energy Gf of Concrete
,”
Materials and Structures
, Vol.
18
(
106
), pp.
291
296
.
29.
Jira´sek
M.
, and
Bazˇant
,
1995
, “
Macroscopic Fracture Characteristics of Random Particle Systems
,”
Intern. J. of Fracture
, Vol.
69
(
3
), pp.
201
228
.
30.
Karihaloo, B. L., and Nallathambi, P., 1991, “Notched Beam Test: Mode I Fracture Toughness,” Fracture Mechanics Test Methods for Concrete, by S. P. Shah and A. Carpinteri, eds., Chapman and Hall, London, pp. 1–86.
31.
Lange
D. A.
,
Jennings
H. M.
, and
Shah
S. P.
,
1993
, “
Relationship Between Fracture Surface Roughness and Fracture Behavior of Cement Paste and Mortar
,”
J. of Am. Ceramic Soc
, Vol.
76
(
3
), pp.
589
597
.
32.
Li
Y.-N.
, and
Bazˇant
Z. P.
,
1994
, “
Eigenvalue Analysis of Size Effect for Cohesive Crack Model
,”
International J. of Fracture
, Vol.
66
, pp.
213
224
.
33.
Marti
P.
,
1989
, “
Size Effect in Double-Punch Tests on Concrete Cylinders
,”
ACI Materials J.
, Vol.
86
(
6
), pp.
597
601
.
34.
Mandelbrot
B. B.
,
Passoja
D. E.
, and
Paullay
A.
,
1984
, “
Fractal Character of Fracture Surfaces of Metals
,”
Nature
, Vol.
308
, pp.
721
722
.
35.
Mecholsky
J. J.
, and
Mackin
T. J.
,
1988
, “
Fractal Analysis of Fracture in Ocala Chert
,”
J. Mat. Sci. Letters
, Vol.
7
, pp.
1145
1147
.
36.
Molosov
A. B.
, and
Borodich
F. M.
,
1992
, “
Fractal Fracture of Brittle Bodies Under Compression
,” (in Russian),
Doklady Akademii Nauk
, Vol.
324
(
3
), pp.
546
549
.
37.
Planas, J., and Elices, M., 1988a, “Size Effect in Concrete Structures: Mathematical Approximations and Experimental Validation,” Cracking and Damage, Strain Localization and Size Effect, Proc. of France-U.S. Workshop, Cachan, France, J. Mazars and Z. P. Bazˇant, eds., pp. 462–476.
38.
Planas, J., and Elices, M., 1988b, “Conceptual and Experimental Problems in the Determination of the Fracture Energy of Concrete,” Proc., Int. Workshop on Fracture Toughness and Fracture Energy, Test Methods for Concrete and Rock, Tohoku Univ., Sendai, Japan, pp. 203–212.
39.
Planas, J., and Elices, M., 1989, “Size Effect in Concrete Structures: Mathematical Approximations and Experimental Validation,” in Cracking and Damage, by J. Mazars and Z. P. Bazˇant, eds., Elsevier, London, pp. 462–476.
40.
Planas, J., and Elices, M., 1993, “Drying Shrinkage Effect on the Modulus of Rupture,” Creep and Shrinkage in Concrete Structures, Proc., ConCreep 5, Barcelona, Z. P. Bazˇant and I. Carol, E., and F. N. Spon, eds., London, pp. 357–368.
41.
Saouma, V. C., Barton, C., and Gamal-el-Din, N., 1990, “Fractal Characterization of Concrete Crack Surfaces,” Engrg. Fracture Mechanics, Vol. 35(1).
42.
Saouma
V. C.
, and
Barton
C. C.
,
1994
, “
Fractals, Fracture and Size Effect in Concrete
,”
J. of Engrg. Mechanics ASCE
, Vol.
120
(
4
), pp.
835
854
.
43.
Sedov, L. I., 1959, Similarity and Dimensional Methods in Mechanics, Academic Press, New York.
44.
Walsh, P. F., 1972, “Fracture of Plain Concrete,” Indian Concr. J., Vol. 46, No. 11.
45.
Walsh
P. F.
,
1976
, “
Crack Initiation in Plain Concrete
,
Mag. of Concr. Res.
, Vol.
28
, pp.
37
41
.
46.
Wells, A. A., 1961, “Unstable Crack Propagation in Metals-Cleavage and Fast Fracture,” Symp. on Crack Propagation, Cranfield, Vol. 1, pp. 210–230.
47.
Xie, Heping, 1993, Fractals in Rock Mechanics, Balkema, Rotterdam, 464 pp.
This content is only available via PDF.
You do not currently have access to this content.