A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.
Issue Section:
Technical Papers
1.
Braasch, H., and Y. Estrin, 1993, Parameter Identification for a Two-Internal-Variable Contistitive Model Using the Evolution Strategy, in L. A. Bertram, S. B. Brown, and A. D. Freed, eds., ASME Material Parameter Estimation for Modern Constitutive Equations, pp. 47–56.
2.
Estrin, Y., 1991, “A Versatile Unified Constitutive Model Based on Dislocation Density Evolution,” in A. D. Freed and K. P. Walker, Eds., ASME High Temperature Constitutive Modeling - Theory and Application, pp. 65–83.
3.
Estrin, Y., 1996, “Dislocation-Density Related Constitutive Modelling,” in A. S. Krausz, Ed., Unified Constitutive Laws of Plastic Deformation, New York, Academic Press.
4.
Estrin
Y.
Giese
A.
1993
, “Steady State Behaviour of Alloy 800H Under Cyclic Deformation
,” Scripta Metallurgica et Materialia
, Vol. 29
, pp. 1223
–1228
.5.
Estrin
Y.
Kubin
L. P.
1986
, “Local Strain Hardening and Nonuniformity of Plastic Deformation
,” Acta Metallurgica
, Vol. 34
(12
), pp. 2455
–2466
.6.
Estrin
Y.
Mecking
H.
1984
, “A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,” Acta Metallurgica
, Vol. 32
(1
), pp. 57
–70
.7.
Giese, A., 1994, Mechanisches Verhalten von ein- und vielkristallinem Aluminium und der Eisenbasislegierung INCOLOY 800H unter Wechselbelastung, Aachen, Shaker Verlag.
8.
Kelly
J. M.
Gillis
P.
1975
, “Continuum Description of Dislocation Stress Reversals
,” Journal of Applied Physics
, Vol. 45
(3
), pp. 1091
–1096
.9.
Kocks
U. F.
1976
, “Laws for work-hardening and low-temperature creep
,” ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol. 98
, pp. 76
–85
.10.
Kuhlmann-Wilsdorf
D.
1970
, “A Critical Test on Theories of Work-Hardening for the Case of Drawn Iron Wire
,” Metallurgical Transactions
, Vol. 27
, pp. 3173
–3179
.11.
Mughrabi, H., 1979, “Microscopic Mechanisms of Metal Fatigue,” in P. Haasen, V. Gerold, and G. Kostorz, eds., Strength of Metals and Alloys, pp. 1615–1638. Pergamon Press.
12.
Nix
W. D.
Gibeling
J. C.
Hughes
D. A.
1985
, “Time-Dependent Deformation of Metals
,” Metallurgical Transactions A
, Vol. 16A
, pp. 2215
–2226
.13.
Sievert, R., C. Haftaoglu, and J. Olschewski, 1993, “Verifizierung und Weiterentwicklung von zwei viskoplastischen Stoffmodellen fu¨r teilchenha¨rtende Nickelbasis-Legierungen auf Grundlage ein- und mehrachisger thermisch-mechanischer Versuche,” Berlin: Bundesanstalt fu¨r Material for schung und-pru¨fung (BAM).
This content is only available via PDF.
Copyright © 1996
by The American Society of Mechanical Engineers
You do not currently have access to this content.