We present a formal methodology to integrate basic materials research results into a design procedure for engineering components. Although the methodology is generic, we demonstrate its development and application in designing a cast automotive control arm. Specifically, we propose a multi-scale analysis whereby the local mechanisms of deformation are accounted for by an internal state variable constitutive model embedded within a non-linear elastic-plastic finite element analysis. Multiple fundamental materials research approaches at different length scales are utilized to quantify the pertinent deformation mechanisms, such as atomistic simulations, microscopy, micromechanical finite element simulations, and mechanical testing. The current methodology is a step toward a larger goal of interactively integrating basic materials science research into engineering system design. [S0094-4289(00)01903-4]

1.
Raj
,
R.
,
Enright
,
M. P.
, and
Frangopol
,
D. M.
,
2000
, “
A System Level Approach for Analyzing the Origins of Variability in Life Prediction of Tungsten Filaments for Incandescent Lamps
,”
Mater. Des.
,
21
, pp.
9
18
.
2.
Subbarayan
,
G.
, and
Raj
,
R.
,
1999
, “
A Methodology for Integrating Materials Science with System Engineering
,”
Mater. Des.
,
20
, pp.
1
20
.
3.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
, pp.
1237
1242
.
4.
Kearney, A., and Rooy, E. L., 1995, “Aluminum Foundary Products,” ASM Handbook, Properties and Selection: Nonferrous Alloys and Special Purpose Materials, Vol. 2, ASM International, pp. 123–151.
5.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-atom Method: Derivation and Application to Impurities and Other Defects in Metals
,”
Phys. Rev. B
,
29
, pp.
6443
6453
.
6.
Baskes
,
M. I.
,
1992
, “
Modified Embedded-Atom Potentials for Cubic Materials and Impurities
,”
Phys. Rev. B
,
46
, pp.
2727
2742
.
7.
Gall, K., Horstemeyer, M. F., Baskes, M. I., and Van Schilfgaarde, M., 2000, “Atomistic Simulations on the Tensile Debonding of an Aluminum-Silicon Interface,” J. Mech. Phys. Solids, in press.
8.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
9.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Interface
,”
J. Mech. Phys. Solids
,
38
, pp.
289
324
.
10.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
, pp.
1377
1397
.
11.
Garrison
,
W. M.
, and
Moody
,
N. R.
,
1987
, “
Ductile Fracture
,”
J. Phys. Chem. Solids
,
48
, pp.
1035
1074
.
12.
Gokhale
,
A. M.
,
Dighe
,
M. D.
, and
Horstemeyer
,
M. F.
,
1998
, “
Effect of Temperature on Silicon Particle Damage in A356 Alloy
,”
Metall. Mater. Trans. A
,
29A
, pp.
905
907
.
13.
Horstemeyer, M. F., Lathrop, J. L., Gokhale, A. M., and Dighe, M. D., 2000, “Modeling Stress State Dependent Damage Evolution in a Cast Al-Si-Mg Aluminum Alloy,” Theor. Appl. Mech., in press.
14.
Horstemeyer, M. F., and Gokhale, A. M., 2000, “A Void-Crack Nucleation Model for Ductile Metals,” Int. J. Solids Struct., in press.
15.
Horstemeyer, M. F., and Mosher, D. A., 1999, “Strain Rate and Temperature Dependent Plasticity-Damage Evolution,” Proc. of Plasticity 99: Constitutive and Damage Modeling of Inelastic Deformation and Phase Transformation, The 7th Int. Symp. On Plasticity and Its Current Applications, Khan, A. S., ed., pp. 651–654.
16.
Dighe, M. D., Gokhale, A. M., Horstemeyer, M. F., and Mosher, D. A., 2000, “Observations of Strain Rate Effects on Damage Evolution in a Cast Al-Si-Mg Base Alloy,” Acta Metall., in press.
17.
Gall, K., Horstemeyer, M. F., McDowell, D. L., and Fan, J., 2000, “Finite Element Analysis of The Debonding and Fracture Characteristics of Si Particle Clusters in Cast Al-Si Alloys Subjected to Cyclic Loading Conditions,” Mech. Mater., in press.
18.
Gall, K., Horstemeyer, M. F., McDowell, D. L., and Fan, J., 2000, “On the Driving Force for Fatigue Crack Formation from Inclusions and Voids,” Int. J. Fract., in press.
19.
Gall
,
K.
,
Yang
,
N.
,
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
Fan
,
J.
,
1999
, “
The Debonding and Fracture of Si Particles During the Fatigue of a Cast Al-Si Alloy
,”
Metall. Trans. A
,
30A
, pp.
3079
3088
.
20.
Samuel
,
A. M.
, and
Samuel
,
F. H.
,
1995
, “
A Metallographic Study of Porosity and Fracture Behavior in Relation to the Tensile Properties in 319.2 End Chill Castings
,”
Metall. Trans.
,
26A
, pp.
2359
2372
.
21.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power Law Creep Under Multiaxial Stresses
,”
J. Metal Sci.
,
14
, pp.
395
402
.
22.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
, p.
363
363
.
23.
Horstemeyer, M. F., and Ramaswamy, S., 2000, “On Factors Affecting Localization and Void Growth in Ductile Metals: A Parametric Study,” Int. J. Damage Mech., in press.
24.
Horstemeyer, M. F., Matalanis, M. M., Sieber, A. M., and Botos, M. L., 2000, “Micromechanical Finite Element Calculations of Temperature and Void Configuration Effects on Void Growth and Coalescence,” Int. J. Plast., in press.
25.
Bammann, D. J., Chiesa, M. L., Horstemeyer, M. F., and Weingarten, L. I., 1993, “Failure in Ductile Materials Using Finite Element Methods,” Structural Crashworthiness and Failure, Wierzbicki, T., and Jones, N., eds., Elsevier Applied Science, The Universities Press (Belfast) Ltd.
26.
Bammann, D. J., Chiesa, M. L., and Johnson, G. C., 1995, “A State Variable Model for Temperature and Strain Rate Dependent Metals,” Rajendran, A. M., and Batra, R. C., eds., Constitutive Laws: Experiments and Numerical Implementation.
27.
Kachanov
,
M. L.
,
1958
, “
Time of the Fractured Process Under Creep Conditions
,”
Izv. Akad. Nauk. SSSR OTN Tekh. Nauk.
,
8
, p.
26
26
.
28.
Rabotnov, Y. N., 1969, Creep Problems in Structural Members, North-Holland, Amsterdam.
29.
Budiansky, B. J., Hutchinson, J. W., and Slutsky, S., 1982, “Void Growth and Collapse in Viscous Solids,” Mechanics of Solids: The Rodney Hill 60th Anniversary Volume, Hopkins, H. G., and Sewell, M. J., eds., Pergamon Press, Oxford, pp. 13–45.
You do not currently have access to this content.