Single crystals of NiAl are very ductile at intermediate temperatures (400–700 K) and were observed to exhibit high strain hardening rates at large strains when loaded in the [110] orientation. The experimentally observed strain hardening in NiAl single crystals could not be predicted using simple hardening models and two-dimensional finite element analysis. The primary slip systems that activate during the deformation are (010)[100] and (100)[100], however, it has been hypothesized that activation of secondary slip on {011} slip planes may be responsible for the high rate of hardening observed. The hardening of intermetallic single crystals when multiple slip systems are activated is not well understood. To study this further, a three-dimensional hardening model and constitutive equations were implemented into a finite element analysis program. Since the parameters required to describe the hardening model such as latent hardening ratios are difficult to obtain experimentally, a parametric study was conducted to estimate values for these parameters that enable the prediction of the experimentally observed load versus elongation curves.

1.
Kumar
,
A. V.
,
Yang
,
C.
, and
Seelam
,
V.
,
1998
, “
Investigation of Localized Deformation in NiAl Single Crystals
,”
ASME J. Eng. Mater. Technol.
,
120
, No.
3
, pp.
206
211
.
2.
Ebrahimi
,
F.
, and
Shrivastava
,
S.
,
1997
, “
Crack Initiation and Propagation in Brittle-to-Ductile Transition Regime of NiAl Single Crystal
,”
Mater. Sci. Eng., A
,
239–240
, pp.
386
392
.
3.
Lahrman
,
F.
,
Field
,
R. D.
, and
Darolia
,
R.
,
1991
, “
High Temperature Ordered Intermetallic Alloys IV
,”
MRS Proc.
,
213
, p.
603
603
.
4.
Miracle
,
D. B.
,
1993
, “
The Physical and Mechanical Properties of NiAl
,”
Acta Metall.
,
41
, No.
3
, pp.
649
684
.
5.
Darolia
,
R.
,
1991
, “
NiAl Alloys for High-Temperature Structural Applications
,”
J. Met.
,
43
, No.
3
, pp.
44
49
.
1.
Asaro
,
R. J.
,
1983
, “
Micromechanics of Crystals and Polycrystals
,”
J. Adv. Appl. Mech.
23
, pp.
1
115
;
2.
Hutchinson, J. W., and Wu, T. Y., eds., Academic, New York.
1.
Pierce
,
D.
,
Asaro
,
R. J.
, and
Needleman
,
A.
,
1982
, “
An Analysis of Non-Uniform and Localized Deformation in Ductile Single Crystals
,”
Acta Metall.
,
30
, pp.
1087
1119
.
2.
Pierce
,
D.
,
Asaro
,
R. J.
, and
Needleman
,
A.
,
1983
, “
Material Rate Dependence and Localized Deformation in Crystalline Solids
,”
Acta Metall.
,
31
, No.
12
, pp.
1951
1976
.
3.
Deve
,
H.
,
Harren
,
S.
,
McCullough
,
C.
, and
Asaro
,
R. J.
,
1988
, “
Micro and Macroscopic Aspects of Shear Band Formation in Internally Nitried Single Crystal of Fe-Ti-Mn Alloys
,”
Acta Metall.
,
36
, No.
2
, pp.
341
365
.
4.
Levit, V. I., Bul, I. A., Hu, J., Winton, J. S., and Kaufman, M. J., 1996, “Development of NiAl Single Crystals and Their Mechanical Properties,” Proc. of International Symposium on Nickel and Iron Aluminides: Processing, Properties and Applications, Materials Week, 1996, Cincinnati, Ohio, pp. 117–122.
5.
Levit, V. I., Bul, I. A., Hu, J., Winton, J. S., and Kaufman, M. J., 1997, “Challenges in the Development and Application of β-NiAl as a Structural Material,” Processing and Design Issues in High Temperature Materials, Proceedings of the Engineering Foundation Conference 1997, Minerals, Metals & Materials Soc (TMS), Warrendale, PA, pp. 185–194.
6.
Crimp, M. A., Tonn, S. C., and Zhang, Y., 1993, “Dislocation Core Structures in B2 NiAl Alloys,” Mater. Sci. Eng., Series 170, pp. 95–102.
7.
Ebrahimi
,
F.
,
Gomez
,
A.
, and
Hicks
,
T. G.
,
1996
, “
Nature of Slip During Indentation on {100} Surface of NiAl
,”
Scr. Mater.
,
34
, No.
2
, pp.
337
342
.
8.
Wenner
,
M. L.
,
1993
, “
A Generalized Forward Gradient Procedure for Rate Sensitive Constitutive Equations
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
985
995
.
9.
Pan
,
J.
, and
Rice
,
J. R.
,
1983
, “
Rate Sensitivity of Plastic Flow and Implications for Yield-Surface Vertices
,”
Int. J. Solids Struct.
,
19
, pp.
973
987
.
10.
Hill
,
R.
,
1966
, “
Generalized Constitutive Relations for Incremental Deformation of Metal Crystals by Multislip
,”
J. Mech. Phys. Solids
,
14
, pp.
95
102
.
11.
Taylor
,
G. I.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals
,”
Proc. R. Soc. London, Ser. A
,
145
, p.
362
362
.
12.
Hutchinson
,
J. W.
,
1970
, “
Elastic-Plastic Behavior of Polycrystalline Metals and Composites
,”
Proc. R. Soc. London, Ser. A
,
319
, pp.
247
272
.
13.
Kocks
,
U. F.
,
1964
, “
Latent Hardening and Secondary Slip in Aluminum and Silver
,”
Trans. Metall. Soc. AIME
,
230
, p.
1160
1160
.
14.
Basinski, S. J., and Basinski, Z. S., 1979, “Plastic deformation and work hardening,” Dislocations in Solids, p. 262, F. R. Nabarro, ed., North Holland, Amsterdam.
15.
Franciosi
,
P.
,
Berveiller
,
M.
, and
Zaoui
,
A.
,
1980
, “
Latent Hardening in Copper and Aluminum Single Crystals
,”
Acta Metall.
,
28
, pp.
273
283
.
16.
Franciosi
,
P.
, and
Zaoui
,
A.
,
1982
, “
Multislip in FCC Crystals a Theoretical Approach Compared with Experimental Data
,”
Acta Metall.
,
30
, pp.
1627
1637
.
17.
Franciosi
,
P.
, and
Zaoui
,
A.
,
1982
, “
Multislip Tests on Copper Crystals: A Junctions Hardening Effect
,”
Acta. Metall.
,
30
, pp.
2141
2151
.
18.
Franciosi
,
P.
,
1985
, “
Concepts of Latent Hardening and Strain Hardening in Metallic Single Crystals
,”
Acta Metall.
,
33
, No.
9
, pp.
1601
1612
.
19.
Weng
,
G. J.
,
1987
, “
Anisotropic Hardening in Single Crystals and the Plasticity of Polycrystals
,”
Int. J. Plast.
,
3
, pp.
315
339
.
20.
Koiter
,
W.
,
1953
, “
Stress-Strain Relations, Uniqueness and Variational Theorems for Elastic-Plastic Materials with a Singular Yield Surface
,”
Q. Appl. Math.
,
11
, p.
350
350
.
21.
Bassani
,
J. L.
, and
Wu
,
T.
,
1991
, “
Latent Hardening in Single Crystals II. Analytical Characterization and Predictions
,”
Proc. R. Soc. London, Ser. A
,
435
, pp.
21
41
.
22.
Bassani
,
J. L.
,
1994
, “
Plastic Flow of Crystals
,”
Adv. Appl. Mech.
,
30
, p.
192
192
.
23.
Weng
,
G. J.
,
1979
, “
Kinematic Hardening Rule in Single Crystals
,”
Int. J. Solids Struct.
,
15
, No.
11
, pp.
861
870
.
24.
Wu
,
T.
,
Bassani
,
J. L.
, and
Laird
,
C.
,
1991
, “
Latent Hardening in Single Crystals I. Theory and Experiments
,”
Proc. R. Soc. London, Ser. A
,
435
, pp.
1
19
.
25.
Levit, V. I., Winton, J. S., Yu, G., and Kaufman, M. J., 1997, “Mechanisms of high tensile elongation in NiAl single crystals at intermediate temperatures,” Proceedings of the ReX ’96, the Third International Conference on Recrystallization and Related Phenomena, McNelley.
26.
Levit, V. I., and Kaufman, M. J., 1997, “Tensile behavior of β-NiAl: intrinsic vs. extrinsic properties,” Structural Intermetallics, Minerals, Metals & Materials Society, pp. 683–690.
27.
Winton, J. S., 1995, “The Effect of Orientation, Temperature, and Strain Rate on the Mechanical Properties of NiAl Single Crystals,” MS thesis, Univ. of Florida.
28.
Hibbitt, Karlsson, & Sorensen, Inc., 1995, “ABAQUS, User’s Manual,” Pawtucket, RI 02860.
You do not currently have access to this content.