Process optimization is carried out to determine process parameters which satisfy the given design requirements and constraint conditions in sheet-metal forming processes. The scheme incorporates with a rigid-plastic finite element method for calculation of the final shape and the strain distribution. The optimization scheme adopts a direct differentiation method or a response surface methodology in order to seek for the optimum condition of process parameters. The algorithm developed is applied to design of the draw-bead force and the die shapes in deep drawing processes. Results show that design of process parameters is well performed to increase the amount of strain for increasing the strength or to decrease the amount of strain for preventing fracture by tearing. The present algorithm also enhances the stable optimum solution with small number of iterations for optimization.

1.
Badrinarayanan, S., and Zabaras, N., 1995, “Preform Design in Metal Forming,” Proceedings, NUMIFORM ’95, S. Shen and P. R. Dawson, eds., A. A. Balkema, pp. 533–538.
2.
Fourment
,
L.
, and
Chenot
,
J. L.
,
1996
, “
Optimal Design for Non-steady State Metal Forming Process-I. Shape Optimization Problem
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
33
50
.
3.
Maniatty
,
A. M.
, and
Chen
,
M. F.
,
1996
, “
Shape Sensitivity Analysis for the Optimal Design of Metal Forming Processes
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
1199
1217
.
4.
Zhao
,
G.
, and
Grandhi
,
R. V.
,
2000
, “
Microstructure Optimization in Design of Forming Processes
,”
Int. J. Mach. Tools Manuf.
,
40
, pp.
691
711
.
5.
Ghoualic
,
M. A.
,
Duvaut
,
G.
,
Ortola
,
S.
, and
Oster
,
A.
,
1998
, “
Local Analytical Design Sensitivity Analysis of the Forging Problem using FEM
,”
Comput. Methods Appl. Mech. Eng.
,
163
, pp.
55
70
.
6.
Barlet, O., Batoz, J. L., Guo, Y. Q., Mercier, F., Naceur, H., and Knopf-Lenoir, C., 1998, “Optimum Design of Blank Contours using the Inverse Approach and a Mathematical Programming Technique,” Proceedings, NUMIFORM ’98, J. Huetink and F. P. T. Baaijens, eds., A. A. Balkema, pp. 178–185.
7.
Ohata
,
T.
,
Nakamura
,
Y.
,
Katayama
,
T.
,
Nakamachi
,
E.
, and
Nakano
,
K.
,
1996
, “
Development of Optimum Process Design System by Numerical Simulation
,”
J. Mater. Process. Technol.
,
60
, pp.
543
548
.
8.
Lee, C. H., and Huh, H., 1998, “Estimation of Shape and Non-shape Parameters in Sheet Metal Forming Processes with Inverse Finite Element Analysis,” Proceedings, NUMIFORM’98, J. Huetink and F. P. T. Baaijens, eds., A. A. Balkema, pp. 793–799.
9.
Hillmann, M., and Kubli, W., 1999, “Optimization of Sheet Metal Forming Processes using Simulation Programs,” Proceedings, NUMISHEET’99, J. C. Gelin and P. Picart, eds., BURS, Besancon, Vol. 1, pp. 287–292.
10.
Ghouati
,
O.
, and
Gelin
,
J. C.
,
1999
, “
Sensitivity Analysis in Forming Processes
,”
International Journal of Forming Processes
,
1
, pp.
297
322
.
11.
Huh
,
H.
, and
Choi
,
T. H.
,
2000
, “
Modified Membrane Finite Element Formulation for Sheet Metal Forming Analysis of Planar Anisotropic Materials
,”
Int. J. Mech. Sci.
,
42
, pp.
1623
1643
.
12.
Hill, R., 1950, The Mathematical Theory of Plasticity, Clarendon Press, Oxford.
13.
Myers, R. H., and Montgomery, D. C., 1995, Response Surface Methodology: Process and Process Optimization using Design Experiments, Wiley, New York.
14.
Quint Co., 1998, AMDESS Users Manual Ver. 1.0.
15.
VMA Engineering, 1993, DOT Users Manual Ver. 4.0.
16.
Gelin, J. C., and Picart, P., 1999, Proceeding of the 4th International Conference and Workshop NUMISHEET’99, BURS, Besancon, Vol. 2.
You do not currently have access to this content.