A phenomenological, polycrystalline version of a nonlocal crystal plasticity model is formulated. The presence of geometrically necessary dislocations (GNDs) at, or near, grain boundaries is modeled as elastic lattice curvature through a curl of the elastic part of the deformation gradient. This spatial gradient of an internal state variable introduces a length scale, turning the local form of the model, an ordinary differential equation (ODE), into a nonlocal form, a partial differential equation (PDE) requiring boundary conditions. Small lattice elastic stretching results from the presence of dislocations and from macroscopic external loading. Finite deformation results from large plastic slip and large rotations. The thermodynamics and constitutive assumptions are written in the intermediate configuration in order to place the plasticity equations in the proper configuration for finite deformation analysis.

1.
Hutchinson
,
J. W.
,
2000
, “
Plasticity at the Micron Scale
,”
Int. J. Solids Struct.
,
37
, pp.
225
238
.
2.
Aifantis
,
E. C.
,
1999
, “
Gradient Deformation Models at Nano, Micro, and Macro Scales
,”
ASME J. Eng. Mater. Technol.
,
121
, pp.
189
202
.
3.
Johnson
,
W.
,
1987
, “
Henri Tresca as the Originator of Adiabatic Heat Lines
,”
Int. J. Mech. Sci.
,
29
, pp.
301
310
.
4.
Courtney, T. H., 2000, Mechanical Behavior of Materials, McGraw Hill, New York.
5.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
,
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
, pp.
475
487
.
6.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
, pp.
5109
5115
.
7.
Bammann
,
D. J.
,
2001
, “
A Model of Crystal Plasticity Containing a Natural Length Scale
,”
Mater. Sci. Eng.
,
A309–310
, pp.
406
410
.
8.
Hughes
,
D. A.
,
Liu
,
Q.
,
Chrzan
,
D. C.
, and
Hansen
,
N.
,
1997
, “
Scaling of Microstructural Parameters: Misorientations of Deformation Induced Boundaries
,”
Acta Mater.
,
45
, pp.
105
112
.
9.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
,
21
, pp.
399
424
.
10.
Bammann, D. J., Prantil, V., Marin, E. B., and Regueiro, R. A., 2002, “Anisotropic Plasticity of Textured Metals,” in preparation.
11.
Kroner
,
E.
,
1960
, “
Allgemeine Kontinuumstheorie der Versetzungen and Eigenspannungen
,”
Arch. Ration. Mech. Anal.
,
4
, pp.
273
334
.
12.
Steinmann
,
P.
,
1996
, “
Views on Multiplicative Elastoplasticity and the Continuum Theory of Dislocations
,”
Int. J. Eng. Sci.
,
34
, pp.
1717
1735
.
13.
Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, New Jersey, p. 60.
14.
Cermelli
,
P.
, and
Gurtin
,
M. E.
,
2001
, “
On the Characterization of Geometrically Necessary Dislocations in Finite Plasticity
,”
J. Mech. Phys. Solids
,
49
, pp.
1539
1568
.
15.
Bilby
,
B. A.
,
Bullough
,
R.
, and
Smith
,
E.
,
1955
, “
Continuous Distributions of Dislocations: A New Application of the Methods of Non-Riemannian Geometry
,”
Proc. R. Soc. London, Ser. A
,
231
, pp.
263
273
.
16.
Lee
,
E. H.
, and
Liu
,
D. T.
,
1967
, “
Finite-Strain Elastic-Plastic Theory with Application to Plane-Wave Analysis
,”
J. Appl. Phys.
,
38
, pp.
19
27
.
17.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
, pp.
1
6
.
18.
Mandel, J., 1974, “Thermodynamics and Plasticity,” Foundations of Continuum Thermodynamics, J. J. Delgado et al., eds., Macmillan, New York, pp. 283–304.
19.
Teodosiu
,
C.
, and
Sidoroff
,
F.
,
1976
, “
A Finite Theory of the Elastovisoplasticity of Single Crystals
,”
Int. J. Eng. Sci.
,
14
, pp.
713
723
.
20.
Simo
,
J. C.
, and
Ortiz
,
M.
,
1985
, “
A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
49
, pp.
221
245
.
21.
Le
,
K.-Ch.
, and
Stumpf
,
H.
,
1993
, “
Constitutive Equations for Elastoplastic Bodies at Finite Strain: Thermodynamic Implementation
,”
Acta Mech.
,
100
, pp.
155
170
.
22.
Simo, J. C., and Hughes, T. J. R., 1998, Computational Inelasticity, Springer-Verlag, New York.
23.
Simo, J. C., 1998, “Numerical Analysis and Simulation of Plasticity,” Handbook of Numerical Analysis, Vol. VI, P. G. Ciarlet, J. L. Lions, eds., Elsevier Science.
24.
Kondo, K., 1952, “On the Geometrical and Physical Foundations of the Theory of Yielding,” Proceedings of the 2nd Japan National Congress for Appl. Mech., pp. 41–47.
25.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta Metall.
,
1
, pp.
153
162
.
26.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
, pp.
1825
57
.
27.
Naghdi
,
P. M.
, and
Srinivasa
,
A. R.
,
1993
, “
A Dynamical Theory of Structured Solids. I Basic Developments
,”
Philos. Trans. R. Soc. London, Ser. A
,
345
, pp.
425
458
.
28.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
29.
Shizawa
,
K.
, and
Zbib
,
H. M.
,
1999
, “
A Thermodynamical Theory of Gradient Elastoplasticity with Dislocation Density Tensor. I. Fundamentals
,”
Int. J. Plast.
,
15
, pp.
899
938
.
30.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity. I. Theory
,”
J. Mech. Phys. Solids
,
47
, pp.
1239
63
.
31.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
, pp.
1565
95
.
32.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity. II. Analysis
,”
J. Mech. Phys. Solids
,
48
, pp.
99
128
.
33.
Huang, Y., Xue, Z., Gao, H., Nix, W. D., and Xia, Z. C., “A Study of Microindentation Hardness Tests by Mechanism-Based Strain Gradient Plasticity,” J. Mater. Res., 15, pp. 1786–96.
34.
Beaudoin
,
A. J.
, and
Acharya
,
A.
,
2001
, “
A Model for Rate-Dependent Flow of Metal Polycrystals Based on the Slip Plane Lattice Incompatibility
,”
Mater. Sci. Eng., A
,
A309–A310
, pp.
411
15
.
35.
Hirth, J. P., and Lothe, J., 1982, Theory of Dislocations. Wiley, New York.
36.
Zbib
,
R. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
,
1998
, “
On Plastic Deformation and the Dynamics of 3D Dislocations
,”
Int. J. Mech. Sci.
,
40
, pp.
113
127
.
37.
Hughes
,
D. A.
,
Khan
,
S. M. A.
,
Godfrey
,
A.
, and
Zbib
,
H. M.
,
2001
, “
Internal Structures of Deformation Induced Planar Dislocation Boundaries
,”
Mater. Sci. Eng., A
,
A309–A310
, pp.
220
226
.
38.
Yasin
,
H.
,
Zbib
,
H. M.
, and
Khaleel
,
M. A.
,
2001
, “
Size and Boundary Effects in Discrete Dislocation Dynamics: Coupling with Continuum Finite Element
,”
Mater. Sci. Eng., A
,
A309–A310
, pp.
294
299
.
39.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size-Dependent Hardness of Silver Single-Crystals
,”
J. Mater. Res.
,
10
, pp.
853
863
.
40.
Nix
,
W. D.
,
1997
, “
Elastic and Plastic Properties of Thin Films on Substrates: Nanoindentation Techniques
,”
Mater. Sci. Eng., A
,
234
, pp.
37
44
.
41.
Zagrebelny
,
A. V.
,
Lilleodden
,
E. T.
,
Gerberich
,
W. W.
, and
Carter
,
C. B.
,
1999
, “
Indentation of Silicate-Glass Films on Al2O3 Substrates
,”
J. Am. Ceram. Soc.
,
82
, pp.
1803
1808
.
42.
McElhaney
,
K. W.
,
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1998
, “
Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,”
J. Mater. Res.
,
13
, pp.
1300
1306
.
43.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
, pp.
167
178
.
44.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics with Internal State Variables
,”
J. Chem. Phys.
,
47
, pp.
597
613
.
45.
Gurtin, M. E., 1981, An Introduction to Continuum Mechanics, Academic Press, New York.
46.
Eringen, A. C., and Claus, W. D., 1970, “A Micromorphic Approach to Dislocation Theory and its Relation to Several Existing Theories,” Fundamental Aspects of Dislocation Theory, Simmons, J. A., de Wit, R., Bullough, R., eds., pp. 1023–1040.
47.
Taylor
,
G. I.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical
,”
Proc. R. Soc. London, Ser. A
,
A145
, pp.
362
387
.
48.
Kocks, U. F., and Mecking, H., 1979, “A Mechanism for Static and Dynamic Recovery,” Strength of Metals and Alloys, Haasen, P., Gerold, V., Kostorz, G., eds., Pergamon Press, pp. 345–350.
49.
Estrin
,
Y.
, and
Mecking
,
H.
,
1984
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
,
32
, pp.
57
70
.
50.
Nes
,
E.
,
1995
, “
Recovery Revisited
,”
Acta Metall. Mater.
,
43
, pp.
2189
2207
.
51.
Miller, A. K., ed., 1987, Unified Constitutive Equations for Creep and Plasticity, Elsevier Applied Science.
52.
Prantil
,
V. C.
,
Jenkins
,
J. T.
, and
Dawson
,
P. R.
,
1993
, “
An Analysis of Texture and Plastic Spin for Planar Polycrystals
,”
J. Mech. Phys. Solids
,
41
, pp.
1357
1382
.
53.
Garofalo, F., Richmond, C., Domis, W. F., and von Gemmingen, F., 1963, “Strain-Time Rate-Stress and Rate-Temperature Relations During Large Deformations in Creep,” Joint International Conference on Creep, vol. 1, pp. 31–39.
54.
Klahn, D., Mukherjee, A. V., and Dorn, J. E., 1971, “Strain-Rate Effects,” ASM, pp. 951–982.
55.
Bammann
,
D. J.
,
1990
, “
Modeling the Temperature and Strain Rate Dependent Large Deformation of Metals
,”
Appl. Mech. Rev.
,
43
, pp.
S312–S319
S312–S319
.
You do not currently have access to this content.