Glass fiber reinforced polymer composites are widely used as structural materials. These two-component materials can be tailored to suit a large variety of applications. A better understanding of the properties of the fiber-matrix “interphase” can facilitate optimum design of the composite structure. The interphase is a microscopic region around the fiber and hence nano-scale investigation using nano-indentation techniques is appropriate to determine mechanical property variations within this region. In this study the atomic force microscope adapted with a commercial nanoindenter has been used to determine the variation of the elastic modulus across the interphase for different silane coated glass fiber reinforced polyester matrix composites. A comparative study of the elastic modulus variation in the various interphases is reported. The results are discussed in the light of the current limitations of the instrumentation and analysis.

1.
Lagache
,
M.
,
Agbossou
,
A.
,
Pastor
,
J.
, and
Muller
,
D.
,
1994
, “
Role of Intephase on the Elastic Behavior of Composite Materials: Theoretical and Experimental Analysis
,”
J. Compos. Mater.
,
28
(
12
), p.
1140
1140
.
2.
Graham
,
J. F.
,
McCague
,
C.
,
Warren
,
O. L.
, and
Norton
,
P. R.
,
2000
, “
Spatially Resolved Nanomechanical Properties of Kevlar® Fibers
,”
Polymer
,
41
, p.
4761
4761
.
3.
Winter
,
R. M.
, and
Houston
,
J. E.
, 1998, “Interphase Mechanical Properties in Epoxy-Glass Fiber Composites as Measured by Interfacial Microscopy,” Society of Experimental Mechanics Proceedings, p. 355.
4.
Piggott
,
M. R.
,
1990
, “
Tailored Interphases in Fiber Reinforced Polymers
,”
Materials Research Society Symposium
,
170
, p.
265
265
.
5.
Agarwal, Bhagwan D., and Broutman, L. J., 1990, Analysis and Performance of Fiber Composites, John Wiley & Sons, Inc., New York, Chap. 2.
6.
Plueddemann, E. P., 1982 Silane Coupling Agents, Plenum Press, New York, Chap. 2.
7.
Khanna
,
S. K.
, and
Shukla
,
A.
,
1994
, “
Influence on Fiber Inclination and Interfacial Conditions on Fracture in Composite Materials
,”
Exp. Mech.
,
34
(
2
), p.
171
171
.
8.
Khanna
,
S. K.
, and
Shukla
,
A.
,
1993
, “
Energy Absorption Mechanisms During Dynamic Fracturing of Fibre-Reinforced Composites
,”
J. Mater. Sci.
,
28, p.
3722
3722
.
9.
Xiaoyan
,
S.
,
Guoquan
,
L.
,
Mai
,
K.
,
Mader
,
E.
,
Muhle
,
M.
,
1998
, “
Interphase Characterization in Composites With New Non-Destructive Methods,”
Composites, Part A
,
29
(
9
), p.
1111
1111
.
10.
Thomason
,
J. L.
,
1995
, “
The Interface Region in Glass Fibre-Reinforced Epoxy Resin Composites: 3. Characterization of Fibre Surface Coatings and the Interphase
,”
Composites
,
26
, p.
487
487
.
11.
Joyce
,
S. A.
, and
Houston
,
J. E.
,
1991
, “
A New Force Sensor Incorporating Force Feedback Control for Interfacial Force Microscopy
,”
Rev. Sci. Instrum.
,
62
, p.
710
710
.
12.
Vanlandingham
,
M. R.
,
McKnight
,
S. H.
,
Palmese
,
G. R.
,
Elings
,
J. R.
,
Huang
,
X.
,
Bogetti
,
T. A.
,
Eduljee
,
R. F.
, and
Gillespie
, Jr.,
J. E.
,
1997
, “
Nanoscale Indentation of Polymer Systems Using the Atomic Force Microscope
,”
J. Adhesion
,
64
, p.
31
31
.
13.
DeVecchio
,
D.
, and
Bhushan
,
B.
,
1997
, “
Localized Surface Elasticity Measurements Using an Atomic Force Microscopy
,”
Rev. Sci. Instrum.
,
68
(
12
), p.
4498
4498
.
14.
Cappella
,
B.
, and
Dietler
,
G.
,
1999
, “
Force-Distance Curves by Atomic Force Microscopy
,”
Surf. Sci. Rep.
,
34
, p.
1
1
.
15.
Sheiko
,
S. S.
,
2000
, “
Imaging of Polymers Using Scanning Force Microscopy: From Superstructures to Individual Molecules
,”
Adv. Polym. Sci.
,
151, p.
61
61
.
16.
Bulychev
,
S. I.
, and
Alekhin
,
V. P.
,
1987
,
Zavod. Lab
,
53
, p.
76
76
.
17.
Doener
,
M. F.
, and
Nix
,
W. D.
,
1986
, “
A Method for Interpreting the Data From Depth-Sensing Indentation Instruments
,”
J. Mater. Res.
,
1
, p.
601
601
.
18.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
, p.
1564
1564
.
19.
Greenwood
,
J. A.
,
Johnson
,
K. L.
, and
Matsubara
,
E.
,
1984
, “
A Surface Roughness Parameter in Hertz Contact
,”
Wear
,
100
, p.
47
47
.
20.
Lemoine
,
P.
, and
McLaughlin
,
J.
,
1999
, “
Nanomechanical Measurements on Polymers Using Contact Mode Atomic Force Microscopy
,”
Thin Solid Films
,
339
, p.
258
258
.
21.
Paruchuri, K. K., 2001, “Nano-Mechanical Characterization and Tailoring of the Interphase in Glass Fiber Reinforced Composites,” M.S. thesis, South Dakota School of Mines and Technology.
22.
Khanna, S. K., 1992, “Effect of Reinforcement and Fiber-Matrix Interface on Dynamic Fracture of Fiber Reinforced Composite Materials,” Ph.D. dissertation.
23.
Randall
,
N. X.
, and
Julia-Schmutz
,
C.
,
1998
, “
Evolution of Contact Area and Pile-Up During the Nanoindentation of Soft Coatings on Hard Substrates
,”
Mater. Res. Soc. Symp. Proc.
,
522
, p.
21
21
.
24.
Pharr
,
G. M.
,
Bolshakov
,
A.
, and
Hay
,
J. C.
,
1998
, “
Nanoindentation of Soft Films on Hard Substrates: Experiments and Finite-Element Simulations
,”
Mater. Res. Soc. Symp. Proc.
,
505
, p.
109
109
.
25.
Lucas, B. N., Oliver, W. C., and Ramamurthy, A. C., 1997, “Spatially Resolved mechanical properties of a ‘TPO’ Using a Frequency Specific Depth-Sensing Indentation Technique,” in ANTEC Conference Proceedings 3, Society of Plastics Engineers, Brookfield, CT, p. 3445.
26.
Vanlandingham, M. R., Villarrubia, J. S., Guthrie, W. F., and Meyers, G. F., 2001, “Nanoindentation of Polymers: An Overview,” Macromolecular Symposium, 167, p. 15.
27.
Dongmo
,
L. S.
,
Villarrubia
,
J. S.
,
Jones
,
S. N.
,
Renegar
,
T. B.
,
Postek
,
M. T.
, and
Song
,
J. F.
,
2000
, “
Experimental Test of Blind Tip Reconstruction for Scanning Probe Microscopy
,”
Ultramicroscopy
,
85
, p.
141
141
.
28.
Asif, S. I. S., Colton, R. J., and Wahl, K. J., 2000, Interfacial Properties on the Submicron Scale, J. Frommer and R. Overney Eds., Acs Symposium Series, American Chemical Society, Washington, DC, No. 781.
29.
Mereanukroh
,
M.
,
Eby
,
R. K.
,
Scavuzzo
,
R. J.
,
Hamed
,
and
Preuschen
,
J.
,
2000
, “
Use of Atomic Force Microscope as a Nanoindeter to Characterize Elastomers
,”
Rubber Chem. Technol.
,
73
, p.
912
912
.
30.
Vanlandingham
,
M. R.
,
McKnight
,
S. H.
,
Palmese
,
G. R.
,
Eduljee
,
R. F.
,
Gillespie
,
J. W.
, Jr.
, and
McCullough
,
R. L.
,
1997
, “
Relating Polymer Indentation Behavior to Elastic Modulus Using Atomic Force Microscopy
,”
Mater. Res. Soc. Symp. Proc.
,
440
, p.
195
195
.
31.
Vanlandingham
,
M. R.
,
McKnight
,
S. H.
,
Palmese
,
G. R.
,
Bogetti
,
T. A.
,
Eduljee
,
R. F.
, and
Gillespie
,
J. W.
, Jr.
,
1997
, “
Characterization of Interphase Regions Using Atomic Force Microscopy
,”
Mater. Res. Soc. Symp. Proc.
,
458
, p.
313
313
.
32.
Vanlandingham
,
M. R.
, 1997, “The Effect of Instrumental Uncertainties on AFM Indentation Measurements,” Microscopy Today, 97(10), p. 12.
33.
Vanlandingham
,
M. R.
,
Dagastine
,
R. R.
,
Eduljee
,
R. F.
,
McCullough
,
R. L.
, and
Gillespie
,
J. W.
, Jr.
,
1999
, “
Characterization of Nanoscale Property Variations in Polymer Composite Systems: Part 1—Experimental Results
,”
Composites, Part A
,
30
, p.
75
75
.
34.
Bogetti
,
T. A.
,
Wang
,
T.
,
Vanlandingham
,
M. R.
, and
Gillespie
,
J. W.
, Jr.
,
1999
, “
Characterization of Nanoscale Property Variations in Polymer Composite Systems: Part 2—Numerical Modeling
,”
Composites, Part A
,
30, p.
85
85
.
You do not currently have access to this content.