This work describes the application of two-dimensional finite element models with a cohesive zone to study quasi-static crack extension in functionally graded Yttria stabilized Zirconia (YSZ)-Bond Coat (BC) alloy (NiCoCrAlY) thermal barrier coatings (TBC). Crack growth under a single heating-cooling cycle simulating a laser thermal shock experiment is considered. The traction-separation relations for YSZ and BC alloy are coupled to yield a traction-separation relation for the individual layers of the graded TBC. Results from laser thermal shock experiments are then used for a systematic evaluation of the material properties in this traction-separation relation. The effective work of separation for YSZ-BC alloy composites, which is indicative of the material’s fracture toughness, is then computed. The model is then used to predict the surface thermal fracture response in a graded TBC having an architecture different from the coatings that were used to evaluate the cohesive properties. These model predictions are then compared with results from laser thermal shock experiments.

1.
Kokini
,
K.
,
DeJonge
,
J.
,
Rangaraj
,
S.
, and
Beardesly
,
B.
,
2002
, “
Thermal Fracture in Functionally Graded Thermal Barrier Coatings with Similar Thermal Resistance
,”
Surf. Coat. Technol.
,
154
, pp.
223
231
.
2.
Rangaraj
,
S.
, and
Kokini
,
K.
,
2003
, “
Multiple Surface Cracking and Its Effects on Interface Cracks in Functionally Graded Thermal Barrier Coatings
,”
ASME J. Appl. Mech.
,
70
, pp.
234
245
.
3.
Kokini
,
K.
,
Takeuchi
,
Y. R.
, and
Choules
,
B. D.
,
1996
, “
Surface Thermal Cracking Owing to Stress Relaxation: Zirconia vs. Mullite
,”
Surf. Coat. Technol.
,
82
, pp.
77
82
.
4.
Choules, B. D., Kokini, K., and Taylor, T. A., 2001, “Thermal Fracture of Ceramic Thermal Barrier Coatings under High Heat Flux with Time-Dependent Behavior-Part I: Experimental Results,” Materials Science and Engineering A299, pp. 296–304.
5.
Rangaraj
,
S.
, and
Kokini
,
K.
,
2003
, “
Estimating The Fracture Resistance of Functionally Graded Thermal Barrier Coatings From Thermal Shock Tests
,”
Surf. Coat. Technol.
,
in press
in press
.
6.
Liebowitz, H., 1969, Fracture: An Advanced Treatise, Volume V-Fracture Design of Structures, Academic Press, New York.
7.
Budiansky
,
B.
,
Amazigo
,
J. C.
, and
Evans
,
A. G.
,
1988
, “
Small-Scale Crack Bridging and the Fracture Toughness of Particulate Reinforced Ceramics
,”
J. Mech. Phys. Solids
,
36
(
2
), pp.
167
187
.
8.
Mataga
,
P. A.
,
1989
, “
Deformation of Crack-Bridging Ductile Reinforcements in Toughened Brittle Materials
,”
Acta Metall.
,
37
(
12
), pp.
3349
3359
.
9.
Bao
,
G.
, and
Zok
,
F.
,
1993
, “
On the Strength of Ductile Particle Reinforced Brittle Matrix Composites
,”
Acta Metall. Mater.
,
41
(
12
), pp.
3515
3524
.
10.
Jin
,
Z.-H.
, and
Batra
,
R. C.
,
1996
, “
Some Basic Fracture Mechanics Concepts in Functionally Graded Materials
,”
J. Mech. Phys. Solids
,
44
(
8
), pp.
1221
1235
.
11.
Jin
,
Z.-H.
, and
Batra
,
R. C.
,
1998
, “
R-Curve and Strength Behavior of a Functionally Graded Material
,”
Mater. Sci. Eng.
,
A242
, pp.
70
76
.
12.
Jin
,
Z.-H.
,
Paulino
,
G. H.
, and
Dodds
, Jr.,
R. H.
,
2002
, “
Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model
,”
ASME J. Appl. Mech.
,
69
, pp.
370
379
.
13.
Tvergaard
,
V.
,
2002
, “
Theoretical Investigation of The Effect of Plasticity On Crack Growth Along a Functionally Graded Region Between Dissimilar Elastic-Plastic Solids
,”
Eng. Fract. Mech.
,
69
, pp.
1635
1645
.
14.
Tvergaard
,
V.
,
2001
, “
Crack Growth Predictions By a Cohesive Zone Model for Ductile Fracture
,”
J. Mech. Phys. Solids
,
49
, pp.
2191
2207
.
15.
Arun Roy
,
Y.
, and
Dodds
, Jr.,
R. H.
,
2001
, “
Simulation of Ductile Crack Growth in Thin Aluminum Panels Using 3-D Surface Cohesive Elements
,”
Int. J. Fract.
,
110
, pp.
21
45
.
16.
Guinea
,
G. V.
,
Elices
,
M.
, and
Planas
,
J.
,
1997
, “
On The Initial Shape of The Softening Function of Cohesive Materials
,”
Int. J. Fract.
,
87
, pp.
139
149
.
17.
Elices
,
M.
,
Guinea
,
G. V.
,
Gomez
,
J.
, and
Planas
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
, pp.
137
163
.
18.
Planas, G., Guinea, G. V., and Elices, M., 1993, “Softening Curves for Concrete and Structural Response,” Fracture and Damage in Concrete and Rock-FDCR2, H. P. Rossmanith, ed., pp. 66–75.
19.
Elfgren, L., 1989, “Fracture Mechanics of Concrete Structures-From Theory to Application,” Rilem Report, Chapman and Hall, New York.
20.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation By Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
21.
Finot
,
M.
,
Shen
,
Y.-L.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1994
, “
Micromechanical Modeling of Reinforcement Fracture in Particle-Reinforced Metal Matrix Composite
,”
Metall. Trans. A
,
A25
, pp.
2403
2420
.
22.
Shet
,
C.
, and
Chandra
,
N.
,
2002
, “
Analysis of Energy Balance when Using Cohesive Zone Models to Simulate Fracture Processes
,”
ASME J. Eng. Mater. Technol.
,
124
, pp.
440
450
.
23.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.
24.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1993
, “
The Influence of Plasticity on Mixed Mode Interface Toughness
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
1119
1135
.
25.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.
26.
Rose
,
J. H.
,
Ferrante
,
J.
, and
Smith
,
J. R.
,
1981
, “
Universal Binding Energy Curves for Metals and Bimetallic Interfaces
,”
Phys. Rev. Lett.
,
47
, pp.
675
678
.
27.
Siegmund
,
T.
, and
Needleman
,
A.
,
1997
, “
A Numerical Study of Dynamic Crack Growth in Elastic Viscoplastic Solids
,”
Int. J. Solids Struct.
,
34
, pp.
769
788
.
28.
Ortiz
,
M.
, and
Pandolfi
,
A.
,
1999
, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
, pp.
1267
1282
.
29.
Munz, D., and Fett, T., 1999, Ceramics: Mechanical Properties, Failure Behavior, Materials Selection, Springer-Verlag, New York.
30.
Qian
,
G.
,
Nakamura
,
T.
,
Berndt
,
C. C.
, and
Leigh
,
S. H.
,
1997
, “
Tensile Toughness Test and High Temperature Fracture Analysis of Thermal Barrier Coatings
,”
Acta Mater.
,
45
(
4
), pp.
1767
1784
.
31.
Choi, S. R., Zhu, D., and Miller, R. A., 2003, “Mode-I, Mode-II and Mixed-Mode Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures,” NASA/TM-2003-212185.
32.
Giannakopoulos
,
A. E.
,
Suresh
,
S.
,
Finot
,
M.
, and
Olsson
,
M.
,
1995
, “
Elastoplastic Analysis of Thermal Cycling: Layered Materials With Compositional Gradients
,”
Acta Metall. Mater.
,
43
(
4
), pp.
1335
1354
.
33.
Williamson
,
R. L.
,
Rabin
,
B. H.
, and
Drake
,
J. T.
,
1993
, “
Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces. Part I: Model Description and Geometrical Effects
,”
J. Appl. Phys.
,
74
(
2
), pp.
1310
1320
.
34.
Hershey
,
A. V.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
, p.
236
236
.
35.
Hill
,
R.
,
1965
, “
Continuum Micromechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
, pp.
89
89
.
36.
Chen
,
I. W.
, and
Argon
,
A. S.
,
1979
, “
Steady State Power Law Creep in Heterogeneous Alloys With Coarse Microstructures
,”
Acta Metall.
,
27
, pp.
785
791
.
37.
Rangaraj
,
S.
, and
Kokini
,
K.
,
2002
, “
Time-Dependent Behavior of Ceramic (Zirconia)-Metal (NiCoCrAlY) Particulate Composites
,”
Mech. Time-Depend. Mater.
,
6
, pp.
171
191
.
38.
Bazant, Z. P., and Planas, J., 1998, Fracture and Size Effects in Concrete and Other Quasi-Brittle Structures, CRC Press, Boca Raton, FL.
39.
Choules, B. D., 1998, “Thermal Fracture of Ceramic Coatings under High Heat Flux with Time Dependent Behavior,” Ph.D. thesis, Purdue University, West Lafayette, IN.
40.
Sia Nemat-Nasser, and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam, New York.
41.
Benveniste
,
Y.
,
1987
, “
A New Approach To The Application of Mori-Tanaka’s Theory In Composite Materials
,”
Mech. Mater.
,
6
, pp.
147
157
.
42.
Rangaraj
,
S.
, and
Kokini
,
K.
,
2003
, “
Interface Thermal Fracture In Functionally Graded Zirconia-Mullite-Bond Coat Alloy Functionally Graded Thermal Barrier Coatings
,”
Acta Mater.
,
61
, pp.
251
267
.
43.
McDonald
,
K. R.
,
Dryden
,
J. R.
,
Majumdar
,
A.
, and
Zok
,
F. W.
,
2000
, “
Thermal Conductance of Delamination Cracks in a Fiber Reinforced Ceramic Composite
,”
J. Am. Ceram. Soc.
,
83
(
3
), pp.
553
562
.
44.
Sampath
,
S.
,
Smith
,
W. C.
,
Jewett
,
T. J.
,
Kim
,
H.
,
1999
, “
Synthesis and Characterization of Grading Profiles in Plasma Sprayed NiCrAlY-Zirconia FGMs
,”
Mater. Sci. Forum
,
308–311
, pp.
383
388
.
45.
Rangaraj, S., and Kokini, K., 2003, “Fracture in Single-Layer YSZ-BC Alloy Composite Coatings Under Thermal Shock,” in press.
46.
ABAQUS®/Standard User’s Manual, 2001, Hibbitt, Karlsson and Sorenson, Inc.
You do not currently have access to this content.