The size effect on the flexural strength (or modulus of rupture) of fiber-polymer laminate beams failing at fracture initiation is analyzed. A generalized energetic-statistical size effect law recently developed on the basis of a probabilistic nonlocal theory is introduced. This law represents asymptotic matching of three limits: (1) the power-law size effect of the classical Weibull theory, approached for infinite structure size; (2) the deterministic-energetic size effect law based on the deterministic nonlocal theory, approached for vanishing structure size; and (3) approach to the same law at any structure size when the Weibull modulus tends to infinity. The limited test data that exist are used to verify this formula and examine the closeness of fit. The results show that the new energetic-statistical size effect theory can match the existing flexural strength data better than the classical statistical Weibull theory, and that the optimum size effect fits with Weibull theory are incompatible with a realistic coefficient of variation of scatter in strength tests of various types of laminates. As for the energetic-statistical theory, its support remains entirely theoretical because the existing test data do not reveal any improvement of fit over its special case, the purely energetic theory—probably because the size range of the data is not broad enough or the scatter is too high, or both.

1.
Baz˘ant, Z. P., 1999, “Size Effect on Structural Strength: A Review,” Archives of Applied Mechanics (Ingenieur-Archiv, Springer Verlag) 69, pp. 703–725;
2.
Reprinted with updates in Handbook of Materials Behavior, 1, J. Lemaitre, ed., Academic Press, San Diego 2001, 30–68.
1.
Baz˘ant, Z. P., 2002, Scaling of Structural Strength, Hermes Penton Science (Kogan Page Science), London.
2.
Baz˘ant, Z. P., 2002, “Size effect theory and its application to fracture of fiber composites and sandwich plates,” Continuum Damage Mechanics of Materials and Structures, O. Allix and F. Hild, eds., Elsevier, Amsterdam, pp. 353–381.
3.
Baz˘ant
,
Z. P.
, and
Chen
,
E.-P.
,
1997
, “
Scaling of structural failure
,”
Appl. Mech. Rev.
,
50
(
10
), pp.
593
627
.
4.
Baz˘ant
,
Z. P.
,
1999
, “
Size effect
,”
Int. J. Solids Struct.
,
37
(
200
), pp.
69
80
.
5.
Baz˘ant, Z. P., and Planas, J., 1998, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton and London.
6.
Baz˘ant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Zhengzhi
,
1996
, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
,
118
(
3
), pp.
317
324
.
7.
Baz˘ant
,
Z. P.
,
Kim
,
J.-J. H.
,
Daniel
,
I. M.
,
Becq-Giraudon
,
E.
, and
Zi
,
Goangseup
,
1999
, “
Size Effect on Compression Strength of Fiber Composites Failing by Kink Band Propagation
,”
Int. J. Fract.
,
95
, pp.
103
141
.
8.
Baz˘ant, Z. P., Zhou, Y., Nova´k, D., and Daniel, I. M., 2001, “Size effect in fracture of sandwich structure components: foam and laminate,” Proc., ASME Intern. Mechanical Engrg. Congress, Vol. AMD-TOC (paper 25413), Am. Soc. of Mech. Engrs., New York, pp. 1–12.
9.
Baz˘ant, Z. P., and Nova´k, D., 2000, “Probabilistic Nonlocal Theory for Quasi-Brittle Fracture Initiation and Size Effect. I. Theory and II. Application,” ASCE Journal of Engineering Mechanics, 126(2), pp. 166–185.
10.
Baz˘ant
,
Z. P.
, and
Nova´k
,
D.
,
2000
, “
Energetic-Statistical Size Effect in Quasi-Brittle Failure at Crack Initiation
,”
ACI Mater. J.
,
97
(
3
), pp.
381
392
.
11.
Baz˘ant, Z. P., 1984, “Size effect in blunt fracture: Concrete, rock, metal,” Journal of Engineering Mechanics ASCE, 110, pp. 518–535.
12.
Mahesh
,
S.
,
Phoenix
,
S. L.
, and
Beyerlein
,
I. J.
,
2002
, “
Strength distributions and size effects for 2D and 3D composites with Weibull fibers in an elastic matrix
,”
Int. J. Fract.
,
115
, pp.
41
85
.
13.
Phoenix
,
S. L.
, and
Beyerlein
,
I. J.
,
2000
, “
Distribution and size scalings for strength in a one-dimensional random lattice with load redistribution to nearest and next nearest neighbors
,”
Phys. Rev. E
,
62
(
2
), pp.
1622
1645
.
14.
Jackson
,
K. E.
,
1992
, “
Scaling Effects in the Flexural Response and Failure of Composite Beams
,”
AIAA J.
,
30
(
8
), pp.
2099
2105
.
15.
Johnson
,
D. P.
,
Morton
,
J.
,
Kellas
,
S.
, and
Jackson
,
K. E.
,
2000
, “
Size Effect in Scaled Fiber Composites Under Four-Point Flexural Loading
,”
AIAA J.
,
38
(
6
), pp.
1047
1054
.
16.
Wisnom
,
M. R.
,
1991
, “
The Effect of Specimen Size on the Bending Strength of Unidirectional Carbon Fiber-Epoxy
,”
Composite Structures
,
18
, pp.
47
63
.
17.
Wisnom
,
M. R.
, and
Atkinson
,
J. A.
,
1997
, “
Reduction in Tensile and Flexural Strength of Unidirectional Glass Fiber-Epoxy with Increasing Specimen Size
,”
Composite Structures
,
38
, pp.
405
412
.
18.
Lavoie
,
J. A.
,
Soutis
,
C.
, and
Morton
,
J.
,
2000
, “
Apparent Strength Scaling in Continuous Fiber Composite Laminates
,”
Compos. Sci. Technol.
,
60
, pp.
283
299
.
19.
Bullock
,
R. E.
,
1974
, “
Strength ratios of composite materials in flexure and torsion
,”
J. Compos. Mater.
,
8
, pp.
200
206
.
20.
Weibull, W., 1939, “The Phenomenon of Rupture in Solids,” Proc., Royal Swedish Institute of Engineering Research (Ingenioersvetenskaps Akad. Handl.), 153, pp. 1–55.
21.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
, pp.
293
297
.
22.
Fisher
,
R. A.
, and
Tippett
,
L. H. C.
,
1928
, “
Limiting Frequency Distribution of the Largest and Smallest Member of a Sample
,”
Proc. Cambridge Philos. Soc.
,
24
, pp.
180
190
.
23.
Fre´chet, M., 1927, “Sur la loi de probabilite´ de l’ e´cart maximum,” Ann. soc. polon. math., 6, p. 93.
24.
von Mises, P., 1936, “La distribution de la plus grande de n valeurs,” Rev. math. Union interbalcanique, 1, p. 1.
25.
Baz˘ant, Z. P., 1998, “Size effect in tensile and compression fracture of concrete structures: computational modeling and design,” Fracture Mechanics of Concrete Structures, Proc., 3rd Int. Conf., FraMCoS-3, held in Gifu, Japan, H. Mihashi and K. Rokugo, eds., Aedificatio Publishers, Freiburg, Germany, pp. 1905–1922.
26.
Baz˘ant, Z. P., and Li, Zhengzhi, 1995, “Modulus of Rupture: Size Effect due to Fracture Initiation in Boundary Layer,” ASCE Journal of Structural Engineering, 121(4), pp. 739–746.
27.
Barenblatt, G. I., 1979, Similarity, Self-Similarity and Intermediate Asymptotics, Plenum Press, New York.
28.
Barenblatt, G. I., 1996, Scaling, Self-similarity and Intermediate Asymptotics, Cambridge University Press.
29.
Bender, M. C., and Orszag, S. A., 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw Hill, New York, Chap. 9–11.
30.
Hinch, E. J., 1991, Perturbation Methods, Cambridge University Press, Cambridge, UK.
31.
Baz˘ant, Z. P., and Xi, Y., 1991, “Statistical size effect in quasi-brittle structures: II. Nonlocal theory,” ASCE J. of Engineering Mechanics, 117(11), pp. 2623–2640.
32.
Baz˘ant, Z. P., 2001, “Probabilistic modeling of quasibrittle fracture and size effect,” Proc., 8th Int. Conf. on Structural Safety and Reliability (ICOSSAR), R. B. Corotis, ed., Swets and Zeitinger, Balkema, pp. 1–23.
33.
Baz˘ant, Z. P., and Nova´k, D., 2003, “Stochastic models for deformation and failure of quasibrittle structures: recent advances and new directions,” Computational Modelling of Concrete Structures (Proc., EURO-C Conf., St. Johann im Pongau, Austria), N. Bic´anic´, R. de Borst, H. Mang and G. Meschke, eds., A. A. Balkema Publ., Lisse, Netherlands, pp. 583–598.
34.
Jackson, K. E., 1990, “Scaling Effects in the Static and Dynamic Response of Graphite-Epoxy Beam Columns,” NASA TM, 102697.
35.
Baz˘ant, Z. P., and Cedolin, L., 1991, Stability of Structures: Elastic, Fracture and Damage Theories, Oxford University Press, New York, Chap. 1.
36.
Baz˘ant, Z. P., and Skupin, L., 1967, “Me´thode d’essai de viellissement des plastiques renforce´es sous contrainte (Testing Method for Aging of Reinforced Plastics Under Stress),” Plastiques renforce´es-Verre textile (Paris), 5, pp. 27–30.
37.
Baz˘ant, Z. P., and Skupin, L., 1968, “Material Properties for the Design of Polyvinylchloride Structural Members (in Czech),” Plasticke´ Hmoty a Kauc˘uk, 5, pp. 161–166.
38.
Wisnom
,
M. R.
,
1999
, “
Size Effect in the Testing of Fiber-Composite Materials
,”
Compos. Sci. Technol.
,
59
, pp.
1937
1957
.
39.
Daniel, I. M., and Weil, N. A., 1963, “The Influence of Stress Gradient upon Fracture of Brittle Materials,” Paper ASME 63-WA-228.
40.
Wisnom
,
M. R.
,
1991
, “
Relationship between Size Effect and Strength Variability in Unidirectional Carbon Fiber-Epoxy
,”
Composites
,
22
, pp.
47
52
.
41.
Atkins
,
A. G.
, and
Caddell
,
R. M.
,
1974
, “
The Law of Similitude and Crack Propagation
,”
Int. J. Mech. Sci.
,
16
(
8
), pp.
541
548
.
42.
Daniels
,
H. E.
,
1945
, “
The statistical theory of the strength of bundles and threads
,”
Proc. R. Soc. London, Ser. A
,
pp.
405
435
.
43.
Curtin
,
W. A.
, and
Takeda
,
N.
,
1998
, “
Tensile strength of fiber composites. II. Model and effects of local geometry
,”
J. Compos. Mater.
,
32
, pp.
2060
2091
.
44.
Landis
,
C. M.
,
Beyerlein
,
I. J.
, and
McMeeking
,
R. M.
,
2000
, “
Micromechanical simulation of the failure of fiber reinforced composites
,”
J. Mech. Phys. Solids
,
48
, pp.
621
648
.
45.
Leath
,
P. L.
, and
Duxbury
,
P. M.
,
1994
, “
Fracture of heterogeneous materials with continuous distribution of local breaking strengths
,”
Phys. Rev. B
,
49
, pp.
14905
14917
.
46.
Baz˘ant, Z. P., 2003, “Probability Distribution of Energetic-Statistical Size Effect in Quasibrittle Fracture,” Probabilistic Engineering Mechanics, in press.
You do not currently have access to this content.