Thermomechanical behavior of superelastic NiTi wires undergoing sequential B2-R-B19 martensitic transformation was investigated by two recently developed in-situ experimental methods (in-situ neutron diffraction and combined ultrasonic and electric resistance measurements) capable of detecting and recognizing the activity of various deformation/transformation processes in NiTi and theoretically by micromechanical modeling. An earlier model of SMA polycrystal transformation is further developed, so it accounts for the strains due to the R-phase related deformation processes in activated NiTi. A continuous variation of the rhombohedral distortion angle α of the R-phase structure with temperature and stress is newly introduced as a legitimate deformation mechanism. Simulation results for NiTi bars and wires exposed to three types of thermomechanical tests—mechanical loading at constant temperature, cooling under constant stress, and recovery stress tests are presented and confronted with results.

1.
Otsuka
,
K.
, and
Ren
,
X.
, 2005, “
Physical Metallurgy of Ti-Ni Based Shape Memory Alloys
,”
Prog. Mater. Sci.
0079-6425,
50
, pp.
511
568
.
2.
Miyazaki
,
S.
, and
Wayman
,
C. M.
, 1988, “
The R-Phase Transition and Associated Shape Memory Mechanism in Ti-Ni Single Crystals
,”
Acta Metall.
0001-6160,
36
, pp.
181
192
.
3.
Šittner
,
P.
,
Lugovyy
,
D.
,
Neov
,
D.
,
Landa
,
M.
,
Lukáš
,
P.
, and
Novák
,
V.
, 2004, “
In-situ Neutron Diffraction Studies of Martensitic Transformations in NiTi
,”
J. Phys. IV
1155-4339,
115
, pp.
269
278
.
4.
Williams
,
K. A.
,
Chiu
,
G. T.
, and
Bernhard
,
R. J.
, 2005, “
Dynamic Modeling of a Shape Memory Alloy Adaptive Tuned Vibration Absorber
,”
J. Sound Vib.
0022-460X,
280/1-2
, pp.
211
234
.
5.
Bidaux
,
J. E.
,
Månson
,
A.
, and
Gotthardt
,
R.
, 1997, “
Vibration Frequency Control of Composites Using the R-Phase Transformation of NiTi Alloys
,”
Proc. of the 2nd International Conference on Shape Memory and Superelastic Technologies SMST1997
, edited by
A. R.
Pelton
et al.
SMST
, Santa Clara, pp.
287
294
.
6.
Naito
,
H.
,
Matsuzaki
,
Y.
, and
Ikeda
,
T.
, 2004, “
A Unified Constitutive Model of Phase Transformations and Rearrangements of Shape Memory Alloy Wires Subjected to Quasistatic Load
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
536
543
.
7.
Wu
,
X. D.
,
Fan
,
Y. Z.
, and
Wu
,
J. S.
, 2000, “
A Study on Variation of the Electrical Resistance for NiTi Shape Memory Alloy Wires During the Thermomechanical Loading
,”
Mater. Des.
0264-1275,
21
, pp.
511
515
.
8.
Šittner
,
P.
,
Lukáš
,
P.
,
Neov
,
D.
,
Daymond
,
M. R.
,
Novák
,
V.
, and
Swallowe
,
G. M.
, 2002, “
Stress Induced Martensitic Transformation in CuAlZnMn Polycrystal Investigated By Two In-situ Neutron Diffraction Techniques
,”
Mater. Sci. Eng., A
0921-5093,
324/1-2
, pp.
225
234
.
9.
Šittner
,
P.
, and
Novák
,
V.
, 2004, “
Experiment Feedbacks in Micromechanics Modeling of Thermomechanical Behaviors of SMA Polycrystals
,”
Scr. Mater.
1359-6462,
51/4
, pp.
321
326
.
10.
Šittner
,
P.
,
Lukáš
,
P.
,
Novák
,
V.
,
Daymond
,
M. R.
, and
Swallowe
,
G. M.
, 2004, “
In-situ Neutron Diffraction Studies of Martensitic Transformations in NiTi Polycrystals Under Tension and Compression Stress
,”
Mater. Sci. Eng., A
0921-5093,
378/1-2
, pp.
97
104
.
11.
Šittner
,
P.
,
Landa
,
M.
,
Sedlák
,
P.
,
Lukáš
,
P.
,
Novák
,
V.
, “
On the Role of the R-Phase in Thermomechanical Behaviors of Commercial NiTi Wires
,”
Proc. of the Int. Conf. on Shape Memory and Superelastic Technologies SMST
2004, Baden Baden, Germany, pp.
29
36
.
12.
Šittner
,
P.
, and
Novák
,
V.
2000, “
Anisotropy of Martensitic Transformations in Modeling of Shape Memory Alloy Polycrystals
,”
Int. J. Plast.
0749-6419,”
16
, pp.
1243
1260
.
13.
Novák
,
V.
, and
Šittner
,
P.
, 2004, “
Micromechanics Modeling of NiTi Polycrystalline Aggregates Transforming Under Tension and Compression Stress
,”
Mater. Sci. Eng., A
0921-5093,
378/1-2
, pp.
490
498
.
14.
Šittner
,
P.
,
Novák
,
V.
,
Landa
,
M.
, and
Lukáš
,
P.
, 2006, “
Deformation Processes in Functional Materials Studied by In-Situ Neutron Diffraction and Ultrasonic Techniques
,”
Mater. Sci. Eng., A
0921-5093, in print.
15.
Šittner
,
P.
,
Landa
,
M.
,
Lukáš
,
P.
, and
Novák
,
V.
, 2006, “
R-Phase Transformation Phenomena in Thermomechanically Loaded NiTi Polycrystals
,”
Mech. Mater.
0167-6636,
38
, pp.
475
492
.
16.
Sedlák
,
P.
,
Seiner
,
H.
,
Landa
,
M.
,
Novák
,
V.
,
Šittner
,
P.
, and
Mañosa
,
Ll.
, 2005, “
Elastic Constants of bcc Austenite and 2H Orthorhombic Martensite in CuAlNi Shape Memory Alloy
,”
Acta Mater.
1359-6454,
53
, pp.
3643
3661
.
17.
Novák
,
V.
, and
Šittner
,
P.
, 2004, “
A Network Micromechanics Model of Thermomechanical Behaviors of SMA Polycrystals
,”
Scr. Mater.
1359-6462,
50
, pp.
199
206
.
18.
Šittner
,
P.
,
Novák
,
V.
, and
Zárubová
,
N.
, 1998,” “
Martensitic Transformations in [001] CuAlZnMn Single Crystal
,”
Acta Mater.
1359-6454,
46
, pp.
1265
1281
.
19.
Šittner
,
P.
,
Lugovyy
,
D.
,
Neov
,
D.
,
Landa
,
M.
,
Lukas
,
P.
, and
Novak
,
V.
, 2004, “
On the R-Phase Transformation Related Phenomena in NiTi Polycrystals Subjected to Thermomechanical Loads
,”
J. Phys. IV
1155-4339,
115
, pp.
269
278
.
20.
Šittner
,
P.
,
Vokoun
,
D.
,
Dayananda
,
G. N.
, and
Stalmans
,
R.
, 2000, “
Recovery Stress Generation in Shape Memory Ti50Ni45Cu5 Thin Wires
,”
Mater. Sci. Eng., A
0921-5093,
286/3
, pp.
298
311
.
You do not currently have access to this content.